首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为( ).
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为( ).
admin
2013-09-03
48
问题
设λ
0
是n阶矩阵A的特征值,且齐次线性方程组(λ
0
E-A)X=0的基础解系为η
1
,η
2
,则A的属于λ
0
的全部特征向量为( ).
选项
A、η
1
和η
2
B、η
1
或η
2
C、c
1
η
1
+c
2
η
2
(c
1
,c
2
全不为零)
D、c
1
η
1
+c
2
η
2
(c
1
,c
2
不全为零)
答案
D
解析
A的属于λ
0
的全部特征向量为方程组(λE-A)X=0的通解,即c
1
η
1
+c
2
η
2
.
(C
1
,C
2
不全为0),故选(D).
转载请注明原文地址:https://jikaoti.com/ti/5acRFFFM
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下面结论正确的是()
设函数y=y(x)由参数方程所确定,求
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x).求3阶矩阵B,使A=PBP-1;
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,试证α1,α2,α3线性无关.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求曲线L的方程;
曲面z-=13-x2-y2将球面x2+y2+z2=25分成三部分,求这三部分曲面面积之比.
将下列曲线化为参数方程:
证明不等式:当a≥0,b≥0时,ea+b≥e2(a2+b2)/4.
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x),
随机试题
EmerginginthelateSixtiesandreachingapeakintheSeventies,LandArtwasoneofarangeofnewforms,includingBodyArt,
【B1】【B4】
ACPABIPACIMDEMEBA《中国药学文摘》的英文缩写是
患者女,27岁,会计。因“不断思考问题,重复无意义动作并引起痛苦2年,自伤1天”主动请朋友陪诊来精神科急诊。患者坐立不安,情绪激越。双手手背可见新鲜烟烫痕迹。该患者存在哪些强迫观念A.强迫怀疑B.强迫穷思竭虑C.强迫性对立观念D.强迫回忆E.
寸口"三部九候"是指
A.相变温度B.渗漏率C.峰浓度比D.注入法E.聚合法脂质体的理化特性为()
设A为三阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵。记,则A=()
OptimismamongtheUK’sbanksandbuildingsocietieshassoaredoverthepastthreemonthsasfirmsgrewprofitsandtookonmor
软件生命周期是指
EI’mgoingtogiveeachofyouapictureandI’dlikeyoutofirstbrieflydescribeandthengiveyourcommentonwhatyousee
最新回复
(
0
)