首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
已知非齐次线性方程组 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
admin
2017-06-14
24
问题
已知非齐次线性方程组
当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解.
选项
答案
方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)、(Ⅱ)同解,即(Ⅰ)、(Ⅱ)同解 时,(Ⅱ中参数应为何值. (Ⅰ)、(Ⅱ)同解=>(Ⅰ)的通解也是(Ⅱ)的通解.将(Ⅰ)的通解代入(Ⅱ)的方程,得 [*] 得m=2,n=4,t=6. 当m=2,n=4,t=6时,方程组(Ⅱ)的增广矩阵是 [*] 因r(B)=r(B|c)=3,故知(Ⅰ)的通解是(Ⅱ)的解,且是(Ⅱ)的通解,也是(Ⅰ)的通 解,故当m=2,n=4,t=6时,方程组(Ⅰ)、(Ⅱ)同解.
解析
转载请注明原文地址:https://jikaoti.com/ti/C0wRFFFM
0
考研数学一
相关试题推荐
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
随机试题
对于危重患者及病情突变者,病程记录的时间应是()
典型肺炎球菌肺炎的临床特征是
A.克雷伯菌肺炎B.产超广谱p内酰胺酶大肠埃希菌所致肺炎C.军团菌肺炎D.金黄色葡萄球菌肺炎E.铜绿假单胞菌肺炎感染首选依米配能+西司他丁的是
根据行为改变阶段的模式,对于问题尚无了解的患者应采取的措施是()
某重力式码头主体工程施工分3个流水段进行,段间、段内施工工艺互无干扰。抛石基床(包括挖泥、抛石、整平)、沉箱安放(包括预制、出运、安装、箱内填料)、上部结构(包括沉箱封顶混凝土、胸墙及面层混凝土浇筑)分项工程各只有一个专业施工队施工。各分项工程所需工时如下
有人说:“在单位,与人相处时要互相信任,互相帮助。”作为一名新同事,今后的工作中你会怎样与同事相处,并取得同事的信任?
根据下表所示的实验设计方案。采用这种设计可控制的主要额外变量是
孔子重视启发式教学,主张“不愤不启,不悱不发”。朱熹对“愤”的解释是()
上层建筑的社会意识形式包括( )
[*]
最新回复
(
0
)