首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,t1t2为实常数. 试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2, β2=t1α2+t2α3,…, βs=t1αs+t2α1,t1t2为实常数. 试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
admin
2013-04-04
59
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,
β
1
=t
1
α
1
+t
2
α
2
, β
2
=t
1
α
2
+t
2
α
3
,…, β
s
=t
1
α
s
+t
2
α
1
,t
1
t
2
为实常数.
试问t
1
t
2
满足什么关系时,β
1
,β
2
,…,β
s
,也为Ax=0的一个基础解系.
选项
答案
由于β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,又α
1
,α
2
,…,α
s
是Ax=0的解,所以根据 齐次方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解. 从α
1
,α
2
,…,α
s
是Ax=0的基础解系,知s=n-r(A). 下面来分析β
1
,β
2
,…,β
s
线性无关的条件.设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
2
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,因此有 [*] (*) 因为系数行列式 [*]=t
1
s
+(-1)
s+1
t
2
s
, 所以当t
1
s
+(-1)
s+1
t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0.从而β
1
,β
2
,…,β
s
线性无关.即当s为偶数t
1
≠±t
2
,s为奇数t
1
≠-t
2
时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系.
解析
如果β
1
,β
2
,…,β
s
是Ax=0的基础解系,则表明
(1)β
1
,β
2
,…,β
s
是Ax=0的解;
(2)β
1
,β
2
,…,β
s
线性无关;
(3)s=n-r(A)或β
1
,β
2
,…,β
s
可表示Ax=0的任一个解.
那么要证β
1
,β
2
,…,β
s
是基础解系,也应当与证这三点.
本题中(1)、(3)是容易证明的,关键是(2).线性相关性的证明在考研中是常见的.
转载请注明原文地址:https://jikaoti.com/ti/7ScRFFFM
0
考研数学一
相关试题推荐
(1997年试题,二)设则F(x)().
(2009年)函数f(χ)=的可去间断点的个数为【】
设函数f(x)在[0,1]上f"(x)>0,则f’(1)、f’(0)、f(1)一f(0)或f(0)一f(1)的大小顺序是
(2002年试题,二)设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△),的线性主部为0.1,则f’(1)=().
(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】
设线性方程组已知[1,一1,1,一1]T是方程组的一个解,试求:(I)方程组的全部解,并用对应的齐次方程组的基础解系表示全部解;(Ⅱ)该方程组x2=x3的全部解.
[2010年]设函数y=f(x)由参数方程(t>一1)所确定,其中Ψ(t)具有二阶导数,且Ψ(1)=5/2,Ψ′(1)=6.已知,求函数Ψ(t).
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设函数z=x(x,y)具有二阶连续导数,变量代换u=ax+y,v=x+by把方程化为求ab。
Y的概率密度函数fY(y);
随机试题
试述“制造新闻”为什么是一种最有效、最生动、最经济的传播信息方式。
IVP左肾未显影,右肾轻度积水,右输尿管下段轻度扩张,膀胱显影,尿结核菌检查三次(+),测膀胱量100ml,肾功能检查正常。最适宜的治疗方法是
患者,女,40岁。因发热、牙龈出血、月经量增多2周来诊。查体:T39.2℃,贫血貌,浅表淋巴结未触及,胸骨压痛,肝肋下1cm,脾肋下2cm。检测白细胞32×109/L,血红蛋白72g/L9,血小板28×109/L;骨髓增生明显活跃,原始细胞占0.62(62
优化设计采取的主要控制措施有()。
我国投标担保可以采用的担保方式有()。
由社会劳动生产率的提高和科学技术的进步引起的固定资产原始价值贬值,称为()。
全面建成小康社会,最艰巨最繁重的任务在(),特别是在贫困地区。
区分新、旧民主革命的主要标志是
AmericanMuseumofNaturalHistoryisoneofthelargestnaturalandhistoricmuseumsintheworldandoneofthemainnaturalh
设A=[6*8-2]、B=6*8-2"、C="6*8-2",属于合法表达式的是
最新回复
(
0
)