首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分 其中L为平面上任意一条简单封闭曲线. (1)试求:f(x)、g(x)使得f(0)=g(0)=0. (2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分 其中L为平面上任意一条简单封闭曲线. (1)试求:f(x)、g(x)使得f(0)=g(0)=0. (2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
admin
2017-05-31
41
问题
设f(x)、g(x)均为连续二阶可导的函数,若曲线积分
其中L为平面上任意一条简单封闭曲线.
(1)试求:f(x)、g(x)使得f(0)=g(0)=0.
(2)计算沿任意一条曲线从点(0,0)到点(1,1)的曲线积分.
选项
答案
在曲线积分[*][y
2
f(x)+2ye
x
+2yg(x)]dx+2[yg(x)+f(x)]dy中,令P(x,y)=y
2
f(x) +2ye
x
+2yg(x),Q(x,y)= 2[yg(x)+f(x)]则[*] (1)由于曲线积分与路径无关,则[*]即2yg’(x)+ 2f’(x)= 2yf(x)+2e
x
+2g(x),亦即yg’(x)+ f’(x)= yf(x)+e
x
+g(x) .比较变量y的同次幂前的系数,得[*]于是,就有g’’(x) 一g(x)=e
x
.解此二阶线性微分方程,得通解为g(x)=c
1
e
x
+c
2
e
一x
+[*],其中c
1
c
2
为任意常数.根据条件g(0)=0,g’(0)= f(0)=0,得[*] (2)再由曲线积分与路径无关,可取路径为OAB,如图1—9—3所示, [*] 则I=∫
L
[y
2
f(x)+2ye
x
+2yg(x)]dx+2[yg(x)+f(x)]dy=∫
0
1
P(x,0)dx+∫
0
1
Q(1,y)dy=∫
0
1
0dx+∫
0
1
2[yg(1)+f(1)]dy=g(1)+2f(1)[*]
解析
(1)利用曲线积分与路径无关的充要条件,将问题化为微分方程问题,这是一类很典型的综合题型.
(2)利用曲线积分与路径无关的充分必要条件在求解曲线积分时,一般均采用折线段的方法.
转载请注明原文地址:https://jikaoti.com/ti/9pwRFFFM
0
考研数学一
相关试题推荐
判断下列函数的奇偶性(其中a为常数):
设f(x)是奇函数,f(1)=a,且f(x+2)-f(x)=f(2).(1)试用a表示,f(2)与f(5);(2)问a取何值时,f(x)以2为周期.
设二元函数z=xex+y+(x+1)ln(1+y),则dz丨(1,0)=___________.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=________.
设L是不经过点(2,0),(-2,0)的分段光滑简单正向闭曲线,就L的不同情形计算
(2009年试题,19)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧.
计算其中S为圆柱面x2+y2=a2介于z=0和z=h之间的部分.
随机试题
真核生物转录生成的mRNA前体的加工过程不包括()(1999年)
A.炔诺酮5mgB.甲地孕酮2mgC.18甲基炔诺酮D.双炔失碳脂7.5mgE.维生素B610mg
国内投资项目,应分析出资人出资比例的()、合理性。
借款人申请设备贷款,须具备银行要求的下列条件()。
已知某设备原值60000元,累计折旧27000元,如现在变现,则变现价值为40000元,该公司适用的所得税率为40%,那么,继续使用该设备引起的现金流出量为()元。
上海近代建筑中巴洛克建筑的实例是()。
监事会是股份公司的()。
以下说法正确的是:
关于因特网中的主机和路由器,以下说法中正确的是()。I.主机通常需要实现TCP协议Ⅱ.路由器必须实现TCP协议Ⅲ.主机必须实现IP协议Ⅳ.路由器须实现IP协议
试述改革开放以来我国的新闻学术研究。(厦门大学,2009年)
最新回复
(
0
)