首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
admin
2015-12-03
33
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
f(x)dx+g(x)]dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散。
选项
A、C
1
y
1
+(C
2
一C
1
)y
2
+(C
1
一C
2
)y
3
。
B、C
1
y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
C、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(C
1
—C
2
))y
3
。
D、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
答案
A
解析
∫
-∞
+∞
f(x,y)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是
∫
-∞
0
f(x)=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://jikaoti.com/ti/7SPRFFFM
0
考研数学一
相关试题推荐
已知函数x2+y2=a2(y>0),求y对x的二阶导数.
求曲线的渐近线.
设(X,Y)服从G={(x,y)|0≤x≤2,0≤y≤1}上的均匀分布,求:X和Y的边缘密度函数和边缘分布函数;
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
求不定积分
设z=f(χy)+yφ(χ+y),且f,φ具有二阶连续偏导数,求.
设X~b(25,p1),Y~b(25—X,p2),求:已知X=k(k=0,1,2,…,25)时,Y的条件分布;
设积分∫1+∞xP(e-cos1/x-e-1)dx收敛,则P的取值范围为()
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
随机试题
A.丘脑腹外侧核B.脊髓后角细胞C.延髓薄束核与楔束核D.脊髓前角细胞E.后根神经节痛觉和温度觉传导通路的第二级神经元是
()是指利用有关的信息资料对人的行为进行分析,从而推论其原因的过程。
教学过程是一种特殊的认识过程,其特殊性体现在()。
关于顺行性遗忘的说法,下列选项正确的有()。
根据以下资料,回答下列问题。关于一般公共预算收入、税收收入、GDP等指标,下列说法错误的是:
下列对人物及其贡献的表述不正确的是()。
《论持久战》
设f(x)三阶可导,且fˊˊˊ(a)≠0,f(x)=f(a)+fˊ(a)(x-a)+(x-a)2(0<θ<1)求.
∫-ππ(x2+∫0xsin3tdt)xcos2xdx=_________。
设f(x)=x2,f[φ(x)]=x2+2x+3且φ(x)≥0,则()
最新回复
(
0
)