首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中 α1一α2,α1一2α2+α3,(α1一α3),α1+3α2一4α3, 可以作为导出组Ax=0的解向量有( )个。
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中 α1一α2,α1一2α2+α3,(α1一α3),α1+3α2一4α3, 可以作为导出组Ax=0的解向量有( )个。
admin
2018-12-19
44
问题
设α
1
,α
2
,α
3
均为线性方程组Ax=b的解,下列向量中
α
1
一α
2
,α
1
一2α
2
+α
3
,
(α
1
一α
3
),α
1
+3α
2
一4α
3
,
可以作为导出组Ax=0的解向量有( )个。
选项
A、4。
B、3。
C、2。
D、l。
答案
A
解析
由于Aα
1
=Aα
2
=Aα
3
=b,可知
A(α
1
—α
2
)=Aα
1
—Aα
2
=b—b=0,
A(α
1
一2α
2
+α
3
)=Aα
1
一2Aα
2
+Aα
3
=b一2b+b=0,
A[
(α
1
一α
3
)]=
(Aα
1
一Aα
3
)=
(b一b)=0,
A(α
1
+3α
2
—4α
3
)=Aα
1
+3Aα
2
一4Aα
3
=b+3b一4b=0。
这四个向量都是Ax=0的解。故选A。[img][/img]
转载请注明原文地址:https://jikaoti.com/ti/6zWRFFFM
0
考研数学二
相关试题推荐
求下列齐次线性方程组的基础解系:(3)nx1+(n一1)x2+…+2xn-1+xn=0.
设A是一个五阶矩阵,A*是A的伴随矩阵,若η,η是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=__________.
已知矩阵A与B相似,其中求a,b的值及矩阵P,使P一1AP=B.
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是________.
设A是3阶矩阵,如果矩阵A的每行元素的和都是2,则矩阵A必定有特征向且___________.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是()
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表示.
设A,B为同阶方阵,当A,B均为实对称矩阵时,证明(1)的逆命题成立.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f’(ξ)=1.
随机试题
患者,女,32岁。转移性右下腹疼痛45小时入院,急诊行阑尾切除术,术后5天体温又升高,排黏液便,里急后重,并有尿频、尿急,直肠指诊:直肠前窝饱满、触痛。最可能的诊断为()
建设工程项目实施过程中发生的下列情形,不能申请行政复议的是( )。
在进行项目的敏感性分析时,考察的不确定因素通常有()
西班牙民风奔放热情,以斗牛、探戈舞蹈、吉他而闻名。()
秘书在协调会议室使用过程中,如果内部会议室使用紧张,应()
日本评论界认为,这本书可以看作是村上春树成为作家以后的自传。而村上本人向来以低调著称,很少在媒体面前谈及自己,如此这般地在作品中______,真可谓是破天荒头一次。填入划横线部分最恰当的一项是()。
下列不属于洪秀全创立的拜上帝会的创作是()。
HS公司的公司债券溢价(利息调整)摊销如下表所示。要求:(1)摊销额的计算采用的是哪种方法?(2)计算债券的票面利率与实际利率?(3)该公司会计年度结束日为12月31日,请按下列要求编制分录:2007年1月1日的转回
阅读案例:“税收减免是出口补贴吗”,并回答问题。案例:税收减免是出口补贴吗1971年,美国经济面临着巨大的贸易逆差。当时的总统尼克松对此感到惊慌,策划出一项特殊的针对美国出口商的所得税减免方案。这一称为“对外销售公司”(FSC)的企业所
给定程序中,函数fun的功能是:求ss所指字符串数组中长度最长的字符串所在的行下标,作为函数值返回,并把其串长放在形参n所指变量中。ss所指字符串数组中共有M个字符串,且串长
最新回复
(
0
)