)已知方阵A=[α1 α2 α3 α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的解.

admin2019-02-26  36

问题 )已知方阵A=[α1  α2  α3  α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3.如果β=α1234,求线性方程组Ax=β的解.

选项

答案令[*] 得 x1α1+x2α2+x3α3+x4α41,α2,α3,α4 将α1=2α2—α3代入上式,整理后得 (2x1+x2—3)α2+(一x1+x33+(x4一1)α4=0 由α2,α3,α4,线性无关,知 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/5xoRFFFM
0

随机试题
最新回复(0)