设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。

admin2019-07-22  53

问题 设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。

选项

答案因为A为实对称矩阵,故必存在正交矩阵Q=(q1,q2,q3),使 QTAQ=Q-1AQ=[*]。 将对应于特征值λ1、λ2的特征向量[*]单位化,得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/5xERFFFM
0

最新回复(0)