首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设二维随机变量(X,Y)在区域D={(x,y):0<x<1,∣y∣<x}上服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差。
假设二维随机变量(X,Y)在区域D={(x,y):0<x<1,∣y∣<x}上服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差。
admin
2019-03-25
44
问题
假设二维随机变量(X,Y)在区域D={(x,y):0<x<1,∣y∣<x}上服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差。
选项
答案
根据均匀分布的定义,(X,Y)的联合概率密度为 f(x,y)=[*] 因此X的边缘概率密度函数为 f
X
(x)=∫
-∞
+∞
f(x,y)dy=[*] 则有 E(X)=∫
-∞
+∞
xf
X
(x)dx=∫
0
1
x.2xdx=[*], E(X
2
)=∫
-∞
+∞
x
2
f
X
(x)dx=∫
0
1
x
2
.2xdx=[*], D(X)=E(X
2
)一[E(X)]
2
=[*] 故 D(Z)=D(2X+1)=4D(X)=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/4KoRFFFM
0
考研数学一
相关试题推荐
二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0)经过正交变换化为标准形f=y12+2y22+5y32,求参数a及所用的正交变换。
用配方法将二次型f(x1,x2,x3)=x12+2x22+2x1x2-2x1x3+2x2x3化为标准形。
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
设A=,且A2-AB=E,求B。
(2006年)设函数y=f(x)具有二阶导数,且f′(x)>0,f"(x)>0,△x为自变量x在X0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
(2004年)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来。现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的总阻力与飞机的速度
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
设已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a的值;(Ⅱ)求方程组Ax=b的通解。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
随机试题
A.否认期B.协议期C.愤怒期D.忧郁期E.接受期“好吧,既然是我,那我就去面对吧”的临终患者处于()
此时证属()治疗方剂宜选()
甲系某地公安局局长,其女儿乙与王某谈恋爱,为了阻止女儿与王某的关系进一步发展,甲利用职务便利,派人监听乙与王某的通话,以“非法侵入住宅”为由拘留了前来甲家作客的王某。王某的父亲丁不服,向当地政府反映和控告,甲一怒之下,通过关系辞退了在当地小学教书的丁。根据
根据《中华人民共和国河道管理条例》的规定,设定洪水位由()根据防洪规划确定。
每四年一届的残疾人奥运会的举办体现了社会保障残疾人的()。
有意义学习的类型有哪些?
在新的历史时期,坚持和贯彻党的群众观点和群众路线,制定各项方针、政策的出发点和归宿是()
直接存储器访问(DMA)是一种快速传递大量数据常用的技术。其工作过程大致如下:(1)向CPU申请DMA传送;(2)获得CPU允许后,DMA控制器接管(73)的控制权;(3)在DMA控制器的控制下,在存储器和(74)之间直接进行数据传
Whatisthetutor’sopinionofthefollowingcompanyprojects?ChooseFIVEanswersfromthebox,andwritethecorrectletter,A
Atpresentcompaniesandindustriesliketosponsorsportsevents.Tworeasonsareputforwardtoexplainthisphenomenon.Thef
最新回复
(
0
)