首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列曲面积分 I=(z+1)dxdy+xydzdx,其中∑1为圆柱面x2+y2=a2上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,∑2为Oxy平面上半圆域x2+y2≤a2,x≥0部分,法向量与z轴正向相反.
求下列曲面积分 I=(z+1)dxdy+xydzdx,其中∑1为圆柱面x2+y2=a2上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,∑2为Oxy平面上半圆域x2+y2≤a2,x≥0部分,法向量与z轴正向相反.
admin
2018-06-15
38
问题
求下列曲面积分
I=
(z+1)dxdy+xydzdx,其中∑
1
为圆柱面x
2
+y
2
=a
2
上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,∑
2
为Oxy平面上半圆域x
2
+y
2
≤a
2
,x≥0部分,法向量与z轴正向相反.
选项
答案
∑
1
∪∑
2
不封闭,添加辅助面后用高斯公式. ∑
3
:z=1,x
2
+y
2
≤a
2
,x≥0,法向量朝上. ∑
4
:x=0,-a≤y≤a,0≤z≤1,法向量与x轴正向相反. ∑
4
垂直ty平面与zx平面[*](z+1)dxdy+xydzdx=0. ∑
3
垂直zx平面[*] [*] ∑
1
,∑
2
,∑
3
,∑
4
围成区域Ω,用高斯公式[*] [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/2S2RFFFM
0
考研数学一
相关试题推荐
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
设A是三阶实对称阵,λ1=-1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
求函数y=excosx的极值.
设f(x)=试问当a取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
设f(u)具有连续的一阶导数,LAB为以为直径的左上半个圆弧,从A到B,其中点A(1,1),点B(3,3).则第二型曲线积分=________
设z=z(u,v)具有二阶连续偏导数,且z=z(z-2y,x+3y)满足求z=z(u,v)的一般表达式.
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立f(tx,ty)=t2f(x,y).证明:
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
随机试题
呼吸性碱中毒
省人民政府所在地的市人民政府制定的行政规章应报哪些机关备案?()
技术状况描述为“材料劣化明显,钢筋表面全部生锈、腐蚀,断面强度有所下降,结构物功能可能受到损害”,对应的衬砌破损技术状况值应为()。
矿产发现权属于( )。
应收账款是指企业应收客户的款项,它包括向其他单位付出的存出保证金,但不包括企业应收内部职工的欠款。()
违拗是一种()。
请认真阅读下列篇目,并按要求作答。日月潭日月潭是我国台湾省最大的一个湖。它在台中附近的高山上。那里群山环绕,树木茂盛,周围有许多名胜古迹。日月潭很深,湖水碧绿。湖中央有个美丽的小岛,叫光化岛。小岛把湖水分成两半,北边像圆圆的太阳,叫日
伪证罪的主体包括()。
Theproducersofinstantcoffeefoundtheirproductstronglyresistedinthemarketplacesdespitetheirmanifestadvantages.Fu
TerrorismI.Whatisterrorism?A.【T1】__________indifferentlights:atacticandstrategy,acrime,aholyduty,etc.B.An
最新回复
(
0
)