设f(x)在[0,1]上有二阶连续导数,f(1)=1,且满足 ∫01[2f(x)-x(x-1)f”(x)]dx=1, 则f(0)=( )

admin2023-01-04  8

问题 设f(x)在[0,1]上有二阶连续导数,f(1)=1,且满足
    ∫01[2f(x)-x(x-1)f”(x)]dx=1,
    则f(0)=(          )

选项 A、0.
B、1.
C、2.
D、1/2.

答案A

解析01x(x-1)f”(x)dx=∫01x(x-1)d[f’(x)]
    =x(x-1)f’(x)|01-∫01(2x-1)f’(x)dx
    =-∫01(2x-1)d[f(x)]
    =-[(2x-1)f(x)|01-2∫01f(x)dx]
    =一[f(1)+f(0)]+2∫01f(x)dx.
    由已知,f(1)+f(0)=1,由f(1)=1,得f(0)=0.A正确.
转载请注明原文地址:https://jikaoti.com/ti/1j2iFFFM
0

最新回复(0)