首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u)(u>0)有连续的二阶导数且z=f(ex2-y2)满足方程=4(x2+y2),求f(u).
设f(u)(u>0)有连续的二阶导数且z=f(ex2-y2)满足方程=4(x2+y2),求f(u).
admin
2019-07-22
48
问题
设f(u)(u>0)有连续的二阶导数且z=f(e
x
2
-y
2
)满足方程
=4(x
2
+y
2
),求f(u).
选项
答案
z=f(e
x
2
-y
2
)是z=f(u)与u=e
x
2
-y
2
的复合函数,由复合函数求导法可导出[*]与f’(u),f’’(u)的关系式,从而由[*]=4(x
2
+y
2
)导出f(u)的微分方程式,然后解出f(u). 令u=e
x
2
-y
2
,则有 [*] 其中[*]=2x
x
2
-y
2
=2xu,[*]=-2ye
x
2
-y
2
=-2yu. 进而可得 [*]=4x
2
u
2
f’’(u)+(2u+4x
2
u)f’(u), [*]=4y
2
u
2
f’’(u)-(2u-4y
2
u)f’(u). 所以 [*]=4(x
2
+y
2
)u
2
f’’(u)+4(x
2
+y
2
)uf’(u). 由题设条件,得u
2
f’’(u)+uf’(u)-1=0. 这是可降阶的二阶方程,令P=f’(u),则方程化为u
2
[*]+uP=1. 解此一阶线性方程.将上述方程改写成 [*]uP=lnu+C
1
,即P=[*] 记y=f(u),于是[*]ln
2
u+C
1
lnu+C
2
(u>0), 其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/16ERFFFM
0
考研数学二
相关试题推荐
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,C,d为常数)()
设函数f(x)连续,且f’(0)>0,则存在δ>0,使得()
曲线eχ+y-sin(χy)=e在点(0,1)处的切线方程为=_______.
证明:当0<χ<1时,(1+χ)ln2(1+χ)<χ2.
设A是三阶矩阵,B是四阶矩阵,且|A|=2,|B|=6,则为().
设有平面闭区域,D={(x,y)|一a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则=()
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
随机试题
唐氏综合征的特殊外观有哪些?
男性,53岁。急性心肌梗死入院治疗1天。发作心慌,呼吸困难,心电图示室性心律,心率165次/分,血压76/40mmHg。急性前壁心肌梗死早期常见何种心律失常
女,28岁。哺乳期间左侧乳房胀痛、发热3天,查体T39.2℃,P106次/分,左乳房外上象限6cm×4cm红肿,有明显压痛和波动感。最可能的诊断是()
某旅馆地下3层,地上10层,每层面积相同(见题26图),则其建筑容积率应为()。
一个完善的市场体系应具备的基本功能包括()。
鞠躬礼源自日本。()
某研究者欲采用简单随机抽样的方法调查北京市平均每个家庭每月给孩子买玩具的花费,根据以往的调查研究结果,总体标准差约为30元,要使本次调查的误差不超过5元,且具有95%的可信程度,则至少需调查的家庭数为
改变驱动器列表框的Drive属性值将激活______事件。
Heisaskedtomakefurtherimprovementsontheproducts______thelightofthefeedbackofthecustomers.
A、Nearthestairs.B、Ontheplatform.C、Attheticketoffice.D、Attheinformationdesk.D
最新回复
(
0
)