首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. ①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关. ②设α1,α2,α3的特征值依次为1,-1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. ①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关. ②设α1,α2,α3的特征值依次为1,-1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
admin
2019-08-11
51
问题
设α
1
,α
2
,α
3
都是矩阵A的特征向量,特征值两两不同,记γ=α
1
+α
2
+α
3
.
①证明γ,Aγ,A
2
γ线性无关,γ,Aγ,A
2
γ,A
3
γ线性相关.
②设α
1
,α
2
,α
3
的特征值依次为1,-1,2,记矩阵B=(γ,Aγ,A
2
γ),β=A
3
γ,求解线性方程组BX=β.
选项
答案
①设α
1
,α
2
,α
3
的特征值为a,b,c,由于它们两两不同,α
1
,α
2
,α
3
线性无关, γ=α
1
+α
2
+α
3
, Aγ=aα
1
+bα
2
+cα
3
, A
2
γ=a
2
α
1
+b
2
α
2
+c
2
α
3
, A
3
γ=a
3
α
1
+b
3
α
2
+c
3
α
3
, 则γ,Aγ,A
2
γ对α
1
,α
2
,α
3
的表示矩阵为[*], 其行列式为范德蒙行列式,并且(因为a,b,c两两不同)值不为0,于是r(γ,Aγ,A
2
γ)=r(α
1
,α
2
,α
3
)=3,因此γ,Aγ,A
2
γ无关. γ,Aγ,A
2
γ,A
3
γ可以用α
1
,α
2
,α
3
线性表示,因此线性相关. ②γ=α
1
+α
2
+α
3
,Aγ=α
1
-α
2
+2α
3
,A
2
γ=α
1
+α
2
+4α
3
,A
3
γ=α
1
-α
2
+8α
3
, B=(γ,Aγ,A
2
γ)=(α
1
,α
2
,α
3
)[*] β=A
3
γ=(α
1
,α
2
,α
3
)[*] 则BX=β具体写出就是 [*] 由于α
1
,α
2
,α
3
线性无关,它和 [*] 同解.解此方程组得唯一解(-2,1,2)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/0lERFFFM
0
考研数学二
相关试题推荐
存在且不为零的充要条件是常数p=______,此时该极限值为______.
设3维向量组α1,α2线性无关,β1,β2线性无关.若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求既可由α1,α2线性表出,也可由β1,β2线性表出的所有非零向
设讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据以上的讨论结果,画出函数y=f(x)的大致图形.
设函数z=f(x,y)(xy≠0)满足=y2(x2-1),则dz=______.
(99年)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
(10年)3阶常系数线性齐次微分方程y"’一2y"+y’一2y=0的通解为y=_______.
(10年)设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式在变换ξ=x+ay.η=x+by下简化为
计算其中D由不等式x2+y2≤x+y所确定.
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
随机试题
下列账户中,与“材料采购”账户相对应的账户有()
发病最急的脑血管意外是
确诊小儿化脓性脑膜炎,最可靠的实验室检查是()
甲国公民约翰的经常居住地在乙国,其在中国居留期间,因合同纠纷在中国法院参与民事诉讼。关于约翰的民事能力的法律适用,下列哪一选项是正确的?()
防火分隔水幕用于开口部位,除舞台口外,开口部位的最大尺寸(宽×高)不宜超过:(2010,64)
某事业单位2009年5月从汽车厂销售中心购进小轿车(小轿气排量为1.6升)一辆,取得普通发票三张:轿车价款235000元;修理工具价款2340元;装置音响设备价款24500元。该事业单位购买该辆轿车应纳车辆购置税()元。
了解客户就是对与客户相关的信息进行()。
下列选项中,不属于输入设备的是()。
材料(大意):材料一:一个外国留学生在法国时去某公司应聘被拒绝,原因是他有三次坐公交车逃票的经历被记录在案。材料二:今年“两会”,期间,有政协委员提议应该给每个公民建立一份道德档案,以此来约束大家,让每个人都要“知耻”。材料三
在BSP方法中,支持企业所必要的逻辑上相关的数据称为______。
最新回复
(
0
)