首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年]设数列{an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2).S(x)是幂级数anxn的和函数. 求S(x)的表达式.
[2013年]设数列{an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2).S(x)是幂级数anxn的和函数. 求S(x)的表达式.
admin
2019-04-08
114
问题
[2013年]设数列{a
n
}满足条件:a
0
=3,a
1
=1,a
n-2
一n(n一1)a
n
=0(n≥2).S(x)是幂级数
a
n
x
n
的和函数.
求S(x)的表达式.
选项
答案
上题方程①为二阶常系数齐次线性微分方程,其特征方程为λ
2
一1=0,解得λ=±1,于是方程①的通解为 S(x)=c
1
e
x
+c
2
e
-x
(其中c
1
,c
2
为任意常数). ② 因 3=a
0
=a
0
0
0
=S(0), 1=a
1
=1·a
1
·0
0
=S’(0), 因将S(0)=3与S’(0)=1,代入通解②及其导数S’(x)=c
1
e
x
一c
2
e
-x
中得到c
1
=2,c
2
=1,于是 S(x)=2e
x
+e
-x
.
解析
转载请注明原文地址:https://jikaoti.com/ti/yGoRFFFM
0
考研数学一
相关试题推荐
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
设函数z=f(μ),方程μ=φ(μ)+∫yxP(t)dt确定μ为x,y的函数,其中f(μ),φ(μ)可微,P(t),φ’(μ)连续,且φ’(μ)≠1,求.
细菌的增长率与总数成正比,如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
[*]
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=,用切比雪夫不等式估计P{|X+Y一3|≥10}.
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
设有微分方程y’一2y=φ(x),其中φ(x)=试求:在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为π/3[s2f(a)-f(1)].若f(1)=1/2,求:f(x)的极值.
设总体X的概率分布为θ(0<θ<1/2)是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=3/2所截而成,计算|∮C(z2-y2)dx+(x2-z2)dy+(y2-x2)dz|.
随机试题
国家实行有利于节能和环境保护的产业政策,(),发展节能环保型产业。
下列关于股份报价转让的说法,错误的是( )。
根据《中华人民共和国未成年人保护法》和《中华人民共和国预防未成年人犯罪法》的规定,对未成年人犯罪一律不公开审理的年龄是()。
下列哪项不属于边防警察的职责?()
儒家经常告诫人,不要得意忘形,这是很难做到的。一个人发了财,有了地位,有了年龄,或者有了学问,自然气势就很高,得意就忘形了,所以人做到得意不忘形很难。但是以我的经验还发现了另一面,有许多人是失意忘形。这种人可以在功名富贵的时候,修养蛮好,一到了没有功名富贵
【《五目海军条约》】首都师范大学2002年近现代国际关系史真题;湖南师范大学2014年世界史综合真题
InthegrandschemeofthingsJeremyBenthamandJohnStuartMillarenormallythoughtofasgoodguys.Betweenthem,theycame
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。在考生文件夹下打开文档EXCEL.XLSX。【背景素材】财务部助理小王需要向主管汇报2013年度公
TheHistoryofAmericanIndiansWhenEuropeansdiscoveredtheWesternhemisphere,theydiscoveredaraceofpeople.【1】____call
A、Theywanttoshowtheirgenuinesympathy.B、Theyhavehadsimilarpersonalexperiences.C、Theydon’tknowhowtocopewiththe
最新回复
(
0
)