首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程exy+y=cosx确定y为x的函数,则dy/dx=________.
设方程exy+y=cosx确定y为x的函数,则dy/dx=________.
admin
2020-02-28
38
问题
设方程e
xy
+y=cosx确定y为x的函数,则dy/dx=________.
选项
答案
等式两边同时对x求导得e
xy
(y+xyˊ)+2yyˊ=-sinx, [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/wBtRFFFM
0
考研数学二
相关试题推荐
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
若x→0时与xsinx是等价无穷小量,试求常数a.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:r=n;(2)设ξ1,ξ2,…,ξr,与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设A为4阶矩阵,满足条件AAT=2E,|A|<0,其中E是4阶单位矩阵,求方阵A的伴随矩阵A*的一个特征值.
因为当χ→0时,[*]χ(χχ-1)~χ2所以[*]
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
(07年)二阶常系数非齐次线性微分方程y"一4y’+3y=2e2x的通解为y=________.
设f(u)是连续函数,证明:∫0πχf(sinχ)dχ=∫0πf(sinχ)dχ,并求.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问:α4能否由α1,α2,α3线性表示?证明你的结论.
随机试题
患者,女性,43岁。因急性化脓性胆囊炎行胆囊切除术,术后第3天无明显诱因下突发气促,逐渐加重,血压正常,呼吸45次/分,唇发绀,双下肺可闻及湿性啰音。吸氧8L/min下血气分析示PaO250mmHg,PaCO230mmHg。下列处理最有意义的是
A.3岁男孩,高热半天,惊厥多次,神志模糊1h,伴黏液脓血便B.4岁女孩,阵发腹痛1d,便血2次,伴皮肤紫癜,1周前曾患上呼吸道感染C.6个月男婴,呕吐门,伴阵发性腹痛,大便呈果酱样,腹部扪及腊肠样块物D.3岁男孩,突起腹痛
下列对中心地等级体系的三类型表述不正确的是()。
关于各变量的变动对权证价值影响方向的说法,错误的是()。
设10个产品中有7个合格品、3个不合格品,从中不放回地任取5个,取出的5个产品中恰有2个不合格品的概率为()。
为了让蓝天常在、绿水长流,我们要根据污染物“随波逐流”的特点,改变以往“各家自扫门前雪”的防治模式,从检测、预警、治理、补偿等方面建立区域联防联控机制,实现“无缝衔接”。从哲学上看,这体现了()
给定资料资料1“一张蓝图绘到底,一任接着一任干。”2018年4月13日,习近平总书记在庆祝海南建省办经济特区30周年大会上发表重要讲话,强调要有“功成不必在我”的精神境界和“功成必定有我”的历史担当。这一重要论述不仅是对海南干部提出的殷
2003年1月22日,公安部发布了加强公安机关内部管理的“五条禁令”其内容有()。
教师中心论的代表人物是()。
下列哪些措施能够恢复或解除死锁?()
最新回复
(
0
)