设f(u)是连续函数,证明:∫0πχf(sinχ)dχ=∫0πf(sinχ)dχ,并求.

admin2019-03-21  39

问题 设f(u)是连续函数,证明:∫0πχf(sinχ)dχ=0πf(sinχ)dχ,并求

选项

答案I=∫0πχf(sinχ)dχ[*]∫π0(π-t)f(sint)(-dt) =π∫0πf(sint)dt-∫0πtf(sint)dt=π∫0πf(sinχ)dχ-∫0πχf(sinχ)dχ-π∫0πf(sinχ)dχ-I, 则∫0πχf(sinχ)dχ=[*]∫0πf(sinχ)dχ. [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/eOLRFFFM
0

随机试题
最新回复(0)