首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问: α4能否由α1,α2,α3线性表示?证明你的结论.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问: α4能否由α1,α2,α3线性表示?证明你的结论.
admin
2019-05-10
38
问题
设向量组α
1
,α
2
,α
3
线性相关,向量组α
2
,α
3
,α
4
线性无关.问:
α
4
能否由α
1
,α
2
,α
3
线性表示?证明你的结论.
选项
答案
不能.证一 用反证法证之.如α
4
能由α
1
,α
2
,α
3
线性表示,由(1)知α
1
又可由α
2
,α
3
线性表示,故α
4
能由α
2
,α
3
线性表示,这与α
2
,α
3
,α
4
线性无关相矛盾. 证二 由命题2.3.1.2(4)、(5)知,α
1
,α
2
,α
3
线性相关,故秩(α
1
,α
2
,α
3
)≤2,而α
2
,α
3
,α
4
线性无关,秩(α
2
,α
3
,α
4
)=3.因而 秩(α
1
,α
2
,α
3
,α
4
)≥秩(α
2
,α
3
,α
4
)=3,而秩(α
1
,α
2
,α
3
)≤2, 故 秩(α
1
,α
2
,α
3
,α
4
)>秩(α
1
,α
2
,α
3
), 即 秩(α
1
,α
2
,α
3
,α
4
)=秩(α
1
,α
2
,α
3
)+1, 因而α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/0WLRFFFM
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设f(χ)在χ=a处二阶可导,证明=f〞(a).
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
随机试题
A、“三多,一少”B、乎吸加深、加快有酮味C、对称性肢体隐痛或烧灼痛,并有异样分布D、下肢疼痛,出现严重供血不足可致肢端坏疽E、反复发生疖肿高血糖症状()
A.血pH7.15,BE一9.0mmol/LB.血pH7.20,BE+9.0mmol/LC.血pH7.40,血浆渗透压290mOsm/LD.血浆渗透压>310mOsm/LE.血浆渗透压>320mOsm/L非酮症高渗性糖尿病昏迷
A.风寒感冒B.风热感冒C.外感内热,表里俱实D.夏令感冒,表寒里热E.外感风寒,乏力倦怠防风通圣丸适用于
患者女,22岁,与家人吵架后倒地翻滚,嚎啕大哭,之后肢体抽动,随即四肢瘫痪,无法站立行走,下列护理评估中关于情感评估内容的是
下列选项中,不属于持续整理形态的是()。
应交所得税额为()万元。由于所得税税率变动和折旧产生的递延税款发生额分别为()。
某人投保了人身意外伤害保险,在回家的路上被汽车撞伤送往医院,在其住院治疗期间因心肌梗死而死亡。那么,这一死亡事故的近因是()。
甲公司研发某项国家级项目,预计总投资为900万元,预计研发期2年。该公司于20×7年6月30日向政府申请研发补贴。20×7年9月30日,主管部门批准了甲公司的补贴申请,并规定共补贴甲公司国家级研发项目400万元,分两次拨付。20×7年9月30日拨付50%
处理并发控制的主要方法是采用封锁技术。()
A、Shecompletelyhasnoidea.B、Shewillgocamping.C、Shewilldosomesocialwork.D、Shewillneedsomevolunteers.C对话中,男士询问女
最新回复
(
0
)