设f(χ)在χ=2处连续,且=-1,则曲线y=f(χ)在(2,f(2))处的切线方程为_______.

admin2020-03-10  66

问题 设f(χ)在χ=2处连续,且=-1,则曲线y=f(χ)在(2,f(2))处的切线方程为_______.

选项

答案y-[*](χ-2)

解析得f(2)=,且

    f′(2)=,则曲线y=f(χ)在点(2,f(2))处的切线方程为y-(χ-2).
转载请注明原文地址:https://jikaoti.com/ti/ujtRFFFM
0

最新回复(0)