设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中 (1)求正交变换X=Qy将二次型化为标准形; (2)求矩阵A.

admin2021-11-15  43

问题 设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中
(1)求正交变换X=Qy将二次型化为标准形;
(2)求矩阵A.

选项

答案(1)由AB+B=0得(E+A)B=0,从而r(E+A)+r(B)≤3, 因为r(B)=2,所以r(E+A)≤1,从而λ=-1为A的特征值且不低于2重, 显然λ=-1不可能为三重特征值,则A的特征值为λ12=-1,λ3=5. 由(E+A)B=0得B的列组为(E+A)X=0的解, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/u3lRFFFM
0

最新回复(0)