首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=为A的特征向量. (1)求a,b及A的所有特征值与特征向量; (2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=为A的特征向量. (1)求a,b及A的所有特征值与特征向量; (2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2021-11-15
22
问题
设A=
为A的特征向量.
(1)求a,b及A的所有特征值与特征向量;
(2)A可否对角化?若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)由Aα=λα得[*]解得a=1,b=1,λ=3. 由|λE-A|=[*]=λ(λ-2)(λ-3)=0得λ
1
=0,λ
2
=2,λ
3
=3. (2)因为A的特征值都是单值,所以A可相似对角化. 将λ
1
=0代入(λE-A)X=0得λ
1
=0对应的线性无关特征向量为α
1
=[*]; 将λ
2
=2代入(λE-A)X=0得λ
2
=2对应的线性无关特征向量为α
2
=[*]; 将λ
3
=3代入(λE-A)X=0得λ
3
=3对应的线性无关特征向量为α
3
=[*]; [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/tulRFFFM
0
考研数学二
相关试题推荐
=_________.
设f(x)在[a,b]上连续,证明:.
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
随机试题
________是谷胱甘肽过氧化物酶的组成成分,该酶可保护心血管和心肌的健康。
A.大椎、商阳B.大敦、厉兑C.太冲、曲泉D.内庭、太冲
下列情形中应征收契税的是()。
工程师来自承包商方嘶的风险通常有()。
(1)中国某国有企业(简称中方)与德国某公司(简称德方),拟定在北京设立华德中外合作经营企业。双方共同制定了合作企业的章程,其中包含下列内容:①该合作企业名称为华德有限责任公司;②该合作企业的注册资本为1000万元人民币,其中中方以房屋和场地使用权投资,其
当前切实解决国有资产流失的关键是()。
十七世纪荷兰绘画创造的一种新的肖像画形式是_______,其代表画家是_______和_______。
BankruptcyratesintheU.S.havebeengrowingformorethantwodecadesdespitegenerallyrisinglevelsofpersonalincome.The
下面文本框显示的是(63)命令的结果。其中(64)项标识了路由标记。(64)
下列定义变量的语句中错误的是
最新回复
(
0
)