首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲面∑:=1及平面π:2x+2y+z+5=0. 求曲面∑上与π平行的切平面方程.
设曲面∑:=1及平面π:2x+2y+z+5=0. 求曲面∑上与π平行的切平面方程.
admin
2019-09-27
13
问题
设曲面∑:
=1及平面π:2x+2y+z+5=0.
求曲面∑上与π平行的切平面方程.
选项
答案
设切点为M
0
(x
0
,y
0
,z
0
),令F(x,y,z)=[*], 则切平面的法向量为n=[*], 因为切平面与平面π平行,所以[*]=t, 得x
0
=2t,y
0
=t,z
0
=2t,将其代入曲面方程,得t=[*],所以切点为[*],平行于平面π的切平面为 π
1
:2(x-1)+[*]+(z-1)=0,即π
1
:2x+2y+z-4=0 π
2
:2(x+1)+[*]+(z+1)=0,即π:2x+2y+z+4=0
解析
转载请注明原文地址:https://jikaoti.com/ti/rOCRFFFM
0
考研数学一
相关试题推荐
设直线L为平面Ⅱ为3x-21y-9z-2﹦0,则()
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。(I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵;(Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
曲线积分I﹦(2xey﹢y3sinx-2y)dx﹢(x2ey-3y2cosx-2x)dy,其中曲线为圆x2﹢y2﹦4上位于第一象限的弧,即A(2,0)到B(0,2)的弧,则积分I﹦______。
(Ⅰ)记力(R)={(x,y)|x2+y2≤R2},求dxdy;(Ⅱ)证明∫—∞+∞.
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
设f(x)在x=0的某邻域内连续且具有连续的导数,又设是条件收敛,绝对收敛,还是发散?
设f(x,y)在平面区域D={(x,y)|x2+y2≤1)上有二阶连续偏导数,且,l为D的边界正向一周.(Ⅰ)证明;(Ⅱ)求二重积分.
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,一1),y’(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为一1.[img][/img]导出y(x)满足的微分方程和初始条件;
在长为L的线段上任取两点,求两点之间距离的数学期望及方差.
随机试题
内源性凝血与外源性凝血的主要区别是
下列情形中,应当由卫生行政部门注销医师注册的是
牙周病复查的时间一般为
A.儿茶B.龙脑冰片C.海金沙D.青黛E.五倍子用微火灼烧,有紫红色烟雾发生的药材是
损伤的处理不正确的有
下列案件中不属于中级人民法院一审管辖的是:()
设备支承在垫铁和二次灌浆层上,当()时,会影响设备安装精度。
材料(大意):材料一:一个外国留学生在法国时去某公司应聘被拒绝,原因是他有三次坐公交车逃票的经历被记录在案。材料二:今年“两会”,期间,有政协委员提议应该给每个公民建立一份道德档案,以此来约束大家,让每个人都要“知耻”。材料三
截至2018年底,中国人工智能市场规模约为238.2亿元,同比增长率达到56.6%。从中国人工智能企业地域分布情况来看,北京企业数量最多,企业数量为368家;其次为广东,人工智能企业数量为185家;排名第三的是上海,数量为131家。2015至2018
下列文艺复兴时期文学名著与作者匹配错误的是:
最新回复
(
0
)