设y=y(x)二阶可导,且y′≠0,x=x(y)是y=y(x)的反函数. (1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程; (2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=3/2的解.

admin2021-12-14  12

问题 设y=y(x)二阶可导,且y′≠0,x=x(y)是y=y(x)的反函数.
(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;
(2)求变换后的微分方程满足初始条件y(0)=0,y′(0)=3/2的解.

选项

答案(1)dx/dy=1/y′,d2x/dy2=d/dy(dx/dy)·dx/dy=d/dx(dx/dy)·dx/dy=-y″(dx/dy)3.代入原方程得y″-y=sinx. (2)特征方程为r2-1=0,特征根为r1,2=±1, 因为i不是特征值,所以设特解为y*=acosx+bsinx,代入方程得a=0,b=-1/2,故y*=-1/2sinx,于是方程的通解为y=C1ex+C2e-x-1/2sinx, 由初始条件得C1=1,C2=-1,满足初始条件的特解为y=ex-e-x-1/2sinx.

解析
转载请注明原文地址:https://jikaoti.com/ti/pL3RFFFM
0

随机试题
最新回复(0)