设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un—1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.

admin2019-05-14  26

问题 设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un—1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.

选项

答案由|un+1一un|=|f(un)—f(un—1)|=|f’(ξ1)||un一un—1| ≤q|un一un—1|≤q2|un—1一un—2|≤…≤qn|un一u0| 且[*](un+1一un)绝对收敛.

解析
转载请注明原文地址:https://jikaoti.com/ti/muoRFFFM
0

最新回复(0)