首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵且r(A)=n=1.证明:存在常数k,使得(A*)2=kA*.
设A为n阶矩阵且r(A)=n=1.证明:存在常数k,使得(A*)2=kA*.
admin
2018-05-25
43
问题
设A为n阶矩阵且r(A)=n=1.证明:存在常数k,使得(A
*
)
2
=kA
*
.
选项
答案
因为r(A)=n-1,所以r(A
*
)=1,于是 [*] 其中 [*] 为非零向量,故 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/lvIRFFFM
0
考研数学三
相关试题推荐
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+fˊ(x)的零点.
设In=(n>1).证明:(1)In+In-2=,并由此计算In;(2)
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
设A为n阶正定矩阵.证明:存在唯一正定矩阵H,使得A=H2.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
关于市场信息时效性的说法不正确的是
A.包含囊肿B.中肾管囊肿C.副中肾管囊肿D.前庭大腺囊肿E.尿道上皮囊肿囊壁内衬柱状细胞,有纤毛,胞质含黏液
A.医患双方不是双向作用,而是医生对病人单向发生作用B.医患双方在医疗活动中都是主动的,医生有权威性,充当指导者C.医生和病人具有近似同等的权利D.长期慢性病人已具有一定医学科学知识水平E.急性病人或虽病情较重但他们头脑是清醒的指导合作型的特点
欲在城市道路的一侧兴建一座大型商店,下列布置方案哪一种是正确的?[2000年第42题]
对混凝土路面进行养生时,不宜采用()的养生方式。
C公司生产和销售甲、乙两种产品。目前的信用政策为“2/15,n/30”,有占销售额60%的客户在折扣期内付款并享受公司提供的折扣;不享受折扣的销售额中,有80%可以在信用期内收回,另外20%在信用期满后10天(平均数)收回。逾期账款的收回,需要支出占逾期账
A公司和B公司有关债务重组资料如下:A公司销售给B公司一批商品,含税价款为1237.5万元,债务到期时款项尚未收到,由于B公司发生财务困难,2014年1月1日双方进行债务重组。经修改债务条件,A公司同意将债务本金减到900万元,同时将剩余债务延期一年,并按
2005年北京市农村固定投资总额为()。与上一年相比,2006年以下哪项的增幅最大()。
关于进一步做好为农民工服务工作的基本原则,下列说法错误的是:
为积极应对气候变化,中国决定首先在广东、湖北、辽宁、陕西、云南5省和天津、重庆、杭州、厦门、深圳、贵阳、南昌、保定8市正式启动国家低碳省区和低碳城市试点工作。国家发展改革委18日在京召开会议,要求上述试点地区应加快形成以低碳排放为特征的产业体系和消费模式,
最新回复
(
0
)