在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0). (1)求l的方程; (2)当l与直线y=ax所围成平面图形的而积为时,确定a的值.

admin2019-08-01  38

问题 在xOy坐标平面上,连续曲线,过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜牢之差等于ax,(常数a>0).
(1)求l的方程;
(2)当l与直线y=ax所围成平面图形的而积为时,确定a的值.

选项

答案(1)设曲线,的方程为y=f(x),则由题设可得 [*],这是一阶线性微分方程,其中[*],Q(x)=ax, 代入通解公式得 [*] 又f(1)=0=a+C,所以C=-a. 故曲线l的方程为y=ax2-ax. (2)曲线l与直线y=ax(a>0)所同成的平面图形如图1—3—11所示. [*] 所以[*] 故 a=2.

解析 [分析](1)利用导数的几何意义建立微分方程,并求解;(2)利用定积分计算平面图形的面积,确定参数.
    [评注]  本题涉及了导数和定积分的几何意义以及一阶线性微分方程的求解,属基本题型.
转载请注明原文地址:https://jikaoti.com/ti/kiERFFFM
0

最新回复(0)