首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交,证明:β1,β2线性相关。
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交,证明:β1,β2线性相关。
admin
2021-11-25
28
问题
设向量组α
1
,α
2
,…,α
n-1
为n维线性无关的列向量组,且与非零向量β
1
,β
2
正交,证明:β
1
,β
2
线性相关。
选项
答案
令[*],因为α
1
,α
2
,…,α
n-1
与β
1
,β
2
正交,所以Aβ
1
=0,Aβ
2
=0,即β
1
,β
2
为方程组AX=0的两个非零解,因为r(A)=n-1,所以方程组AX=0的基础解系含有一个线性无关的解向量,所以β
1
,β
2
线性相关。
解析
转载请注明原文地址:https://jikaoti.com/ti/h0lRFFFM
0
考研数学二
相关试题推荐
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
函数f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1)=1,证明:(Ⅰ)存在c∈(0,1),使得f(c)==2。
设3阶矩阵A=(Ⅰ)t为何值时,矩阵A,B等价?说明理由;(Ⅱ)t为何值时,矩阵A,C相似?说明理由.
设y=χ3+3aχ2+3bχ+c在χ=-1处取最大值,又(0,3)为曲线的拐点,则().
设A是n阶矩阵,下列结论正确的是().
设向量组I:α1,α2……αr,可由向量组Ⅱ:β1β2……βs线性表示,则()
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;(A一B恒可逆。上述命题中,正确的个数为()
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为()
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,,试证明存在ξ∈(a,b)使.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
随机试题
教育发展的物质基础是()
儒家第一个把“君、师”并列相称,肯定其地位的是
不属于汉语特点的是()
根据斯派奇模型,不属于决策支持系统组成部分的是
()的消费行为相互影响力最大。
最令企业满意的一种衡量国际公共关系效果的方法是()
Actingissuchanover-crowdedprofessionthattheonlyadvicethatshouldbegiventoayoungpersonthinkingofgoingonthes
患者,男,40岁。十二指肠溃疡病史15年,近2个月来自感头痛、眩晕而就诊。检查:血压160/100mmHg,诊断为高血压病。下列降压药应慎用的是
有关羊水的功能,错误的描述是
下列情况下签订的合同中,属无效合同的有()。
最新回复
(
0
)