首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A= (Ⅰ)t为何值时,矩阵A,B等价?说明理由; (Ⅱ)t为何值时,矩阵A,C相似?说明理由.
设3阶矩阵A= (Ⅰ)t为何值时,矩阵A,B等价?说明理由; (Ⅱ)t为何值时,矩阵A,C相似?说明理由.
admin
2020-02-28
37
问题
设3阶矩阵A=
(Ⅰ)t为何值时,矩阵A,B等价?说明理由;
(Ⅱ)t为何值时,矩阵A,C相似?说明理由.
选项
答案
(Ⅰ)A≌B[*]r(A)=r(B). B=[*],知r(B)=2. 显然,当t=0时,有r(A)=r(B)=2,A≌B. (Ⅱ)|λE-C|=[*]=(λ-2)[(λ-2)
2
-1]=(λ-2)(λ-3)(λ-1), 则C有三个不同的特征值λ
1
=1,λ
2
=2,λ
3
=3,且存在可逆矩阵P,使得 P
-1
CP=A=[*] |λE-A|=[*]=(λ-t)[(λ-2)
2
-1] =(λ-t)(λ-3)(λ-1). 当t=2时,A有与C一样的三个不同的特征值.故知,当t=2时,有可逆矩阵Q,使得 Q
-1
AQ=A=P
-1
CP. 从而有 (QP
-1
)
-1
A(QP
-1
)=C,即A~C.
解析
转载请注明原文地址:https://jikaoti.com/ti/tBtRFFFM
0
考研数学二
相关试题推荐
已知矩阵与相似.求x与y;
二次型f(x1,x2,x3)=-4x1x2-8x1x3-4x2x3经过正交变换化为标准形,求:正交变换的矩阵Q.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
已知下列非齐次线性方程组(I),(II):(1)求解方程组(I),用其导出组的基础解系表示通解;(2)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解?
求
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设A=且A~B求a;
设齐次线性方程组其中a≠0,6≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设f(x)在[a,b]上可导,在(a,b)内二阶可导,f(a)=f(b)=0,f’(a).f’(b)>0.试证:1)ξ∈(a,b),使f(ξ)=0.2)η∈(a,b),使f"(η)=f(η).
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在
随机试题
管理学的学习方法有()
Onceyougainconfidenceinyourself,youcanjudgetruthanderrorwithyouownmind.
患者,女,28岁。近2个月白带量多,色淡黄,质粘稠,无臭气,倦怠乏力,纳少便溏,四肢不温,面色萎黄,舌淡苔白腻,脉缓弱。其证候是
病人田某,50岁,体重90kg,因急性心肌梗死入院。病人3天未排大便,显得焦躁不安。此时护士首先需要解决的护理问题是()
在有关流水施工的概念中,下列正确的是()。
合同风险因素,按风险的来源性质划分,包括()。
单位和个人在银行开立的人民币存款账户分为()。
根据下面材料回答下列小题。2011年1~9月,全国造船完工5101万载重吨,同比增长18-3%,9月当月完工786万载重吨,环比增长67.2%;新承接船舶订单规模2902万载重吨,同比下降42.8%;手持船舶订单规模16886万载重吨,同比下降1
“三结合”的教育一般是指()。
2018年国务院政府工作报告指出,我国将深化基础性关键领域改革。下列有关说法不准确的是:
最新回复
(
0
)