首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2020-03-16
87
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f
’
(ξ)(b一a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f
’
(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 φ
’
(x)=f
’
(x)一[*]。 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ
’
(ξ)=0,即 f
’
(ξ)一[*]=0, 所以f(b)一f(a)=f
’
(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此 由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
)[*](0,δ),使得 f
’
(ξ
x
0
)=[*]。 (*) 又由于[*]=A,对(*)式两边取x
0
→0
+
时的极限: f
+
’
(0)=[*]=A, 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://jikaoti.com/ti/mstRFFFM
0
考研数学二
相关试题推荐
是否存在平面二次曲线y=ax2+bx+c,其图形经过以下各点:(0,1),(—2,2),(1,3),(2,1)。
解齐次线性方程组
[2016年]已知f(x)在区间[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.求f(x)在区间[0,]上的平均值.
[2008年]如图1.3.2.1所示,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf′(x)dx等于().
[2018年]已知曲线L:y=x2(x≥0),点0(0,0),点A(0,1).P是L上的动点,S是直线OA与直线AP及曲线L所围图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
(1998年)确定常数a,b,c的值,使
设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解.求。
设有矩阵Am×n,Bn×m,Em+AB可逆,(1)验证:Em+BA也可逆,且(En+BA)一1=Em—B(Em+AB)一1A;(2)设
设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f’(ξ)>0.
随机试题
证明下列函数在x=0处不可导:f(x)=x2/3;
要显示或关闭Excel应用程序窗口中的“格式”工具栏,应使用“________”菜单下的“工具栏”子菜单。
关于非晶硅平板探测器的叙述,不正确的是
烧伤休克期补液时,调节补液量及速度的指标不包括
高血压合并支气管哮喘的患者,不宜使用的药物是
设计概(预)算的编制是按三个层次逐步完成的,这三个层次依次为()。
下列关于并购基金的表述中,正确的是()。
有限合伙企业的投资人数为()人以上()人以下,且至少有1个普通合伙人。
学生中心取向的教学策略包括()
根据《宪法》规定,全国人大的一个代表团或者30名以上的代表联名,可以提出对()的质询案。
最新回复
(
0
)