首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 问X与Y是否相互独立?
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 问X与Y是否相互独立?
admin
2019-05-08
25
问题
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为
问X与Y是否相互独立?
选项
答案
解一 设X,Y的分布函数分别为F
X
(x),F
Y
(y),则 [*] 故当x≥0,y≥0时,有 F
X
(x)F
Y
(y)=(1-e
-0.5x
)(1-e
-0.5y
)=1-e
-0.5x
-e
-0.5y
+e
-0.5(x+y)
=F(x,y). 而当x>0或y<0时,有 F
x
(x)F
Y
(y)=0=F(x,y), 所以对任意x,y,均有F(x,y)=F
x
(x)F
Y
(y),则X与Y独立. 解二 先求出(X,Y)的联合概率密度函数f(x,y)及边缘密度f
X
(x),f
Y
(y).当x≥0,y≥0时,有 [*] 于是有 [*] 因而[*]同理,可求得[*] 易验证对x≥0,y≥0,均有 f(x,y)=f
X
(x)f
Y
(y). 对x<0或y<0,也有f(x,y)=f
X
(x)·f
Y
(y)=0,故对任意x,y均有f(x,y)=f
X
(x)f
Y
(y),由命题3.3.5.1(1)知,X与Y相互独立. 注:命题3.3.5.1 (1)对任意二维随机变量(X,Y),有X,Y相互独立[*]对任意x,y,有F(x,y)=F
X
(x)F
Y
(y);X,Y相互独立[*]对任意x,y,有f(x,y)=f
X
(x)f
Y
(y).
解析
转载请注明原文地址:https://jikaoti.com/ti/gvnRFFFM
0
考研数学三
相关试题推荐
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
设二维随机变量(X,Y)的分布函数为Ф(2x+1)Ф(2y一1),其中Ф(x)为标准正态分布函数,则(X,Y)~N________。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
设随机变量(X,Y)的分布函数为F(x,y),边缘分布为FX(x)和FY(y),则概率P{X>x,Y>y}等于()
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修。设开机后第1次停机时已生产了的产品个数为x,求x的数学期望E(X)和方差D(X)。
设f(x)在(-1,1)内二阶连续可导,且f’’(x)≠0.证明:(1)对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2).
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
求由方程x2+y3-xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
随机试题
证券公司的主要业务包括()
Graves病最常发生哪种心律失常
进口药品标签、包装除按规定执行外,还应标明
ABC会计师事务所接受J公司董事会的委托,对J公司2009年度的财务报表进行审计,癸注册会计师作为项目负责人,2010年3月5日准备草拟审计报告,在复核助理人员对应收账款审计的工作底稿时,发现下列问题,请代为作出正确的专业判断。助理人员对大额逾期的应收
在常规控制图中,可以判异的情况有()。[2007年真题]
公安工作的鲜明特点是公安机关及人民警察在履行职责、行使职能、完成安全保卫任务过程中形成的。()
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
将E—R图转换为关系模式时,实体和联系都可以表示为()。
Readthearticlebelowaboutpublicimage.Choosethebestwordtofilleachgap,fromA,B,CorD.Foreachquestion19—33,ma
A、Themaincharacterremainsthesame.B、Themaincharacterdiesintheend.C、Themaincharactergainshisends.D、Themaincha
最新回复
(
0
)