设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…). 证明:fn(x)=∫0xf0(t)(x-t)n-1dt(n=1,2,…)

admin2019-09-27  15

问题 设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).
证明:fn(x)=0xf0(t)(x-t)n-1dt(n=1,2,…)

选项

答案n=1时,f1(x)=∫0xf0(t)dt,等式成立; 设n=k时,fk(x)=[*], 则n=k+1时, fk+1(x)=∫0xfk(t)dt=[*]f0(u)(t-u)k-1du =[*]∫0xdu∫uxf0(u)(t-u)k-1dt=[*]∫0xf0(u)(x-u)kdu 由归纳法得fn(x)=[*]∫0xf0(t)(x-t)n-1dt(n=1,2,…)

解析
转载请注明原文地址:https://jikaoti.com/ti/bkCRFFFM
0

随机试题
最新回复(0)