首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
设α,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置。证明:r(A)≤2。
admin
2017-12-29
15
问题
设α,β为三维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别为α,β的转置。证明:r(A)≤2。
选项
答案
r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β)≤2。 因为A=αα
T
+ββ
T
,A为3×3矩阵,所以r(A)≤3。 因为α,β为三维列向量,所以存在三维列向量ξ≠0,使得 α
T
ξ=0,β
T
ξ=0, 于是 Aξ=αα
T
ξ+ββ
T
ξ=0, 所以Ax=0有非零解,从而r(A)≤2。
解析
转载请注明原文地址:https://jikaoti.com/ti/bNKRFFFM
0
考研数学三
相关试题推荐
设{Xn}是一随机变量序列,Xn的密度函数为:
积分=()
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求
设矩阵,且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵。
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.求a,b的值;
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解。
证明:当x>0时,不等式<1+x成立.
随机试题
心每搏量的异长自身调节是指
血钾、钠、氯、钙测定时,标本应置于
肾虚型哮病的治疗用方为
患者,男性,32岁,6天前感冒后出现左下后牙区胀痛,进食、吞咽时加重。昨日起出现局部自发性跳痛,张口受限,低热,头痛。检查可见:左下颌角区颊部稍肿胀,无压痛,张口度两指,左下第三磨牙近中阻生牙龈红肿充血,挤压可见远中盲袋内少量脓液溢出,颊侧前庭沟丰满、充血
男,42岁。3天来右上后磨牙痛重,冷热加剧,夜间痛而来就诊。近1年多来,右上磨牙进食时咬到某特定位置时出现撕裂样痛,冷热敏感,平时咬物不适。检查:16咬合面似有近远中方向越过边缘嵴的细裂纹,颊尖高陡,无龋洞,不松动,叩痛(+)。最可能的诊断是
毛石基础接槎应做成()。
会计人员继续教育中,对会计人员职业品德教育的内容有()。
TheInfluenceofRomeEmpireonToday’sSocietyI.OverallIntroduction:Manyaspectsoftoday’ssocietyhavebeenaffectedbya
TheindigenouspeopleinAustraliaare______,whichhave2%ofthetotalpopulationin200
Lookingforanewweightlossplan?Trylivingontopofamountain.Mountainaircontainslessoxygenthanairatloweraltitud
最新回复
(
0
)