首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明当x>0时,(x2—1)lnx≥(x—1)2。
证明当x>0时,(x2—1)lnx≥(x—1)2。
admin
2018-12-29
28
问题
证明当x>0时,(x
2
—1)lnx≥(x—1)
2
。
选项
答案
令f(x)=(x
2
—1)lnx—(x—1)
2
,易知f(1)=0。又 f′(x)=2xlnx—x+2—[*],f″(x)=2lnx+1+[*]。 可见,当0<x<1时,f″′(x)<0;当1<x<+∞时,f″′(x)>0。所以当x>0时, f″(x)>f″(1)=2>0, 即f′(x)单调递增,因此,当0<x<1时,f′(x)<f′(1)=0;当1<x<+∞时,f′(x)>f′(1)=0。所以f(x)≥f(1)=0(0<x<+∞),即证得当x>0时,(x
2
—1)lnx≥(x—1)
2
。
解析
转载请注明原文地址:https://jikaoti.com/ti/aN1RFFFM
0
考研数学一
相关试题推荐
(91年)已知两条直线的方程是则过L1且平行于L2的平面方程是_______.
(99年)设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
(08年)函数f(x,y)=在点(0,1)处的梯度等于
(15年)设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.(I)证明向量组β1,β2,β3为R3的一个基;(Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,
(97年)设则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
(01年)设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________.
已知函数f(x)具有二阶连续导数,f(0)=0,且对任意的光滑有向封闭曲面∑,都有求函数f(x)的表达式.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)一g(x)=o((x一x0)2)(x→x0).
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
随机试题
修整代型前,需要在石膏模型的基牙上加蜡恢复外形及邻接关系,但不能加蜡的是哪一项
艾森克认为人格有几个维度
下列依法享有对直辖市中级人民法院院长任免权的机关是?()
供应商认为采购过程使自己的权益受到损害的,可以在知道其权益受到损害之日起__________个工作日内,以__________形式向采购人提出质疑。()
下列各项中,不属于选择市场调查方法时必须考虑的因素是( )。
基本预备费不包括()。
进口合同如采用CIF条件,下面说法正确的有()。
关于收发电子邮件的叙述中,理解错误的是()。
ThetownIliveinisabouttoputcamerasatalltrafficlightstocatchpeoplewhorunredlights.It【C1】______meofhowmany
三次科技革命对人类社会的历史进程产生了极其深远的影响,三次科技革命发生的共同社会根源是()。
最新回复
(
0
)