首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
admin
2018-06-27
40
问题
已知A=
可对角化,求可逆矩阵P及对角矩阵Λ,使P
-1
AP=Λ.
选项
答案
由特征多项式 |λE-A|=[*]=(λ-1)
2
(λ+2), 知矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2. 因为矩阵A可以相似对角化,故r(E-A)=1.而 [*] 所以x=-6. 当λ=1时,由(E-A)x=0得基础解系α
1
=(-2,1,0)
T
,α
2
=(0,0,1)
T
. 当λ=-2时,由(-2E-A)x=0得基础解系α
3
=(-5,1,3)
T
. 那么,令P=(α
1
,α
1
,α
3
)=[*],得P
-1
AP=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/YpdRFFFM
0
考研数学二
相关试题推荐
设a>1,f(t)=at-at在(-∞,+∞)内的驻点为t(a).问a为何值时,t(a)最小?并求出最小值.
设z=z(x,y)是由9x2一54xy+90y2一6yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.写出与A相似的矩阵B;
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aii=∑λi,所以a+a+a=6+0+0→a=2.
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
求arctanχ带皮亚诺余项的5阶麦克劳林公式.
随机试题
林明德是某在线销售摄影器材企业的管理人员,于2017年初随机抽取了100名网站注册会员,准备使用Excel分析他们上一年度的消费情况。根据下列要求,帮助他运用已有的数据完成这项工作。隐藏“2016年消费”工作表,将“各年龄段人数”工作表置于所有工作表最
病历:女性,17岁,高中生。三个月前无明显原因出现失眠、上课时注意力不集中,主动要家长给介绍男朋友,两个月发展到不去读书,在街上闲游,住院前一个月常半夜高歌、自言自语、扮鬼脸、做怪动作、照镜子、痴笑,有时头插鲜花,甚至赤身裸体、将家中玻璃窗打碎、喝痰盂中
试分析路透社经久不衰的原因。
加密算法和解密算法是在一组仅有合法用户知道的密码信息的控制下进行的,该密码信息称为________。
A.3%过氧化氢液B.0.12%氯己定C.25%甲硝唑凝胶D.2%碳酸氢钠液E.碘甘油目前公认最成熟的控制菌斑的含漱药物为
融资性售后回租服务,按照“融资租赁服务”征收增值税。()
汇总记账凭证账务处理程序的适用范围是()。
甲公司系2016年12月在深圳证券交易所挂牌的上市公司,主要从事手机、彩色电视机的生产和销售,按单项存货计提存货跌价准备。XYZ会计师事务所接受委托对该公司2017年年度财务会计报告进行审计。在审计过程中,该事务所对以下交易或事项及其处理提出了异议:(1
下列关于t分布的表述,错误的是()
Theeconomicsituation(willimprove)giventhatthereis(forecasttobe)less(unemployment)andclosuresthan(inpreviousye
最新回复
(
0
)