首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内可导,且, 则a=___.
设f(x)在(-∞,+∞)内可导,且, 则a=___.
admin
2020-02-28
26
问题
设f(x)在(-∞,+∞)内可导,且
,
则a=___.
选项
答案
1
解析
转载请注明原文地址:https://jikaoti.com/ti/PBtRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明:r=n;(2)设ξ1,ξ2,…,ξr,与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设A,B是两个事件,且求(1)(X,Y)的概率分布;(2)Z=X2+Y2的概率分布;(3)问X,Y是否相互独立.
在上半平面求一条凹曲线(图6.2),使其上任一点P(χ,Y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
曲线y=(x一1)2(x一3)2的拐点个数为
设实方阵A=(aij)4×4满足:(1)aij=Aij(i,j=1,2,3,4,其中Aij为aij的代数余子式);(2)a11≠0,求|A|.
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述:①若f(x)>g(x),则f’(x)>g’(x);②若f’(x)>g’(x),则f(x)>g(x).则()
随机试题
关于核外电子排布的叙述,错误的是
患者,男性,22岁。发热2周,初诊亚急性细菌性心内膜炎,需做血培养进一步明确诊断,应取血
治疗壮热不退,神昏谵语,发斑发疹,其色紫暗,可选用
下列人体实验类型中,不需要付出道德代价的是()
背景中南机电安装工程公司中标某商住大厦的全部机电安装工程。合同规定,工程量清单计价采用综合单价计价。该公司项目部计算该工程相关费用为:分部分项工程量清单计价2200万元,措施项目清单计价70.5万元,其他项目清单计价120万元,规费90万元,税金80.5
根据《国务院关于投资体制改革的决定》,采用投资补助方式的政府投资项目,政府投资主管部门需要审批()。
资产减值损失影响利润总额。()
1.2017年中央一号文件是21世纪以来指导“三农”工作的第14个中央一号文件。这份题为《中共中央国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》的文件,首次提出“田园综合体”概念,指出“支持有条件的乡村建设以农民合作社为主要载
如果一项投资不能产生利润,那么以投资为基础的减轻赋税就是毫无用处的。任何一位担心新资产不会赚钱的公司经理都不会因减轻公司本来就不欠的税款的允诺而得到安慰。下面哪项是从上文得出的最可靠的推论?()
()片面夸大环境和教育的作用,认为环境和教育是行为发展的唯一条件。
最新回复
(
0
)