首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在上半平面求一条凹曲线(图6.2),使其上任一点P(χ,Y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
在上半平面求一条凹曲线(图6.2),使其上任一点P(χ,Y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
admin
2019-02-23
46
问题
在上半平面求一条凹曲线(图6.2),使其上任一点P(χ,Y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
选项
答案
若将此曲线记为y=y(χ),则依曲率计算公式,并注意曲线凹凸性的假设,即要求y〞≥0,故曲率 K=[*] 又由于过(χ,f(χ))点的法线方程为X-χ+y′(χ)[Y-y(χ)]=0,它与χ轴交点Q的横坐标X
0
=χ+y′(χ)y(χ),所以,线段[*]的长度为 [*] 这样,由题设该曲线所满足的微分方程及初始条件为 [*] y(1)=1,y′(1)=0. 解二阶方程的初值问题[*]得 y=[*](e
χ-1
+e
1-χ
).
解析
转载请注明原文地址:https://jikaoti.com/ti/h4WRFFFM
0
考研数学二
相关试题推荐
计算=__________
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
设f(x)为二阶可导的偶函数,f(0)=1,f’’(0)=2且f’’(x)在x=0的邻域内连续,则=______
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______
求函数y=的单调区间与极值,并求该曲线的渐近线.
若函数f(x)在[0,1]上二阶可微,且f(0)=f(1),|f’’(x)|≤1,证明:|f’(x)|≤在[0,1]上成立.
设A为n阶矩阵且r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
随机试题
在Windows中,一个文件名的最大长度可达_______个字符。
Theteacherofphysicaleducationtoldusthatthefootballmatch______ifitrained.
切口感染除细菌外还受下列哪些因素影响
患者,女,60岁。双侧腮腺反复肿大十余年,有脂肪肝、糖尿病病史。一侧腮腺造影显示腺实质内可见一腺泡充盈缺损,边缘光滑完整,分支导管受压移位;部分末梢导管呈球状扩张,主导管不均匀扩张。初步可以除外以下哪种情况
怎样理解我国宪法对经济制度的规定?
工程进行投标报价时应遵守的原则是()。
我国施工单位承揽工程或从事建筑施工活动的范围,取决于它的()。
下列关于商业银行风险管理模式经历的四个发展阶段的说法,不正确的是()。
TheEnglishLanguageEnglishisthemost【T1】____________languageintheworldandismorewidelyspokenandwrittenthan
BarackandMichelleObamaunderstandtheheavyburdenofstudentloandebt.TheObamasdidnotpayofftheirstudentloansuntil
最新回复
(
0
)