已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)一3f(1-sinx)=8x+α(x), 其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程

admin2019-07-22  58

问题 已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式
    f(1+sinx)一3f(1-sinx)=8x+α(x),
其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.

选项

答案由f(1+sinx)一3f(1一sin x)=8x+α(x),令x→0,得 f(1)一3f(1)=0, 故f(1)=0.又 [*] 所以f’(1)=2.由于f(x+5)=f(x),所以f(6)=f(1)=0,f’(6)=f’(1)=2.故所求的切线方程为y=2(x一6),即 2x-y-12=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/OyERFFFM
0

最新回复(0)