首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1=x,y2=ex,y3=e2x是微分方程y"+p(x)y’+q(x)y=f(x)的3个特解,则该微分方程的通解为( ).
已知y1=x,y2=ex,y3=e2x是微分方程y"+p(x)y’+q(x)y=f(x)的3个特解,则该微分方程的通解为( ).
admin
2020-10-21
15
问题
已知y
1
=x,y
2
=e
x
,y
3
=e
2x
是微分方程y"+p(x)y’+q(x)y=f(x)的3个特解,则该微分方程的通解为( ).
选项
A、y=C
1
e
x
+C
2
e
2x
+x.
B、y=C
1
x+C
2
e
x
+e
2x
.
C、y=C
1
(e
x
—x)+C
2
(e
2x
一x).
D、y=C
1
(x—e
x
)+C
2
(x—e
2x
)+e
x
.
答案
D
解析
因为y
1
=x,y
=e
x
,y
3
=e
2x
是微分方程y"+p(x)y’+q(x)y=f(x)的3个线性无关解,所以y
1
=x—e
x
,y
=x一e
2x
是微分方程y"+p(x)y’+q(x)y=0的两个线性无关解,由齐次与非齐次线性微分方程解的结构知,所求微分方程的通解为
y=C
1
(x—e
x
)+C
2
(x一e
2x
)+e
x
.
应选D.
转载请注明原文地址:https://jikaoti.com/ti/OSARFFFM
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是
设A=(a1,a2,a3,a4)为四阶方阵,且a1,a2,a3,a4为非零向量组,设AX=0的一个基础解系为(1,0,-4,)T,则方程组A*X=0的基础解系为()。
设二次型f(x1,),x2,x3)=求常数a的值
设有解。求X
设A为三阶实对称矩阵,a1=(m,m-1)T是方程组AX=0的解,a2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=___.
求曲线y=-x2+1上一点P(x0,y0)(其中x0≠0),使过P点作抛物线的切线,此切线与抛物线及两坐标轴所围成的图形面积面积最小。
设函数f(x)在(―a,a)(a>0)内连续,在x=0处可导,且f′(0)≠0.(Ⅰ)求证:对任意给定的x(0<x<a),存在0<θ<1,使(Ⅱ)求极限
(06年)试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3)其中o(x3)是当x→0时比x3高阶的无穷小.
求极限。
随机试题
“和平统一、一国两制”构想的科学涵义是什么?
关于子宫内膜异位症与子宫腺肌病,以下哪项不正确
丁某(14岁)与同村的刘某(19岁)二人各拿出2000元钱,在当地开了一个小商行,未在工商行政管理部门注册登记为合伙企业,也未起字号,主要从事商品零售业务。商行开设后,生意红火,两人的收入不仅能满足自己所需,还能贴补家用。半年后,商行与某食品厂因购销合同发
(2008)网壳相邻杆件间的夹角宜大于下列哪一个角度?
下列环境评价价值的方法能够用于评估环境污染对健康影响的是( )。
下列属于闭式自动喷水灭火系统的有()
关于凸性,下列说法正确的有( )。
住宅小区业主委员会的职责不包括()。
试论劳动改造的矫正作用。
过去10年来受雇为广播和电视中穿插的广告配乐的音乐家的数量急剧减少了。尽管过去10年中每年制造的广告数量并没有显著的变化,这种情况还是发生了。下面哪个如果在过去的10年中发生,最不能解释上述事实?()
最新回复
(
0
)