设函数f(x)在[0,+∞)内二阶可导,并当x>0时满足xf’’(x)+3戈[f’(x)]2≤1—e-x. 又设f(0)=f’(0)=0,求证:当x>0时,

admin2014-02-05  37

问题 设函数f(x)在[0,+∞)内二阶可导,并当x>0时满足xf’’(x)+3戈[f(x)]2≤1—e-x
又设f(0)=f(0)=0,求证:当x>0时,

选项

答案方法1。由泰勒公式得[*]其中x>0,0<ξ’(x)=x一f(x),F(0)=0,F’’(x)=1一f’’(x),于是由(*)式F’’(x)=1-f’’(x)>0(x>0)→F(x)在[0,+∞)单调增加→F(x)>F(0)=0(x>0)→F(x)在[0,+∞)单调增加→F(x)>F(0)=0(x>0),即f(x)[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/ONDRFFFM
0

最新回复(0)