首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在(一∞,+∞)内满足关系式f’(x)=f(x),且f(0)=1,证明:f(x)=ex.
若函数f(x)在(一∞,+∞)内满足关系式f’(x)=f(x),且f(0)=1,证明:f(x)=ex.
admin
2020-03-16
27
问题
若函数f(x)在(一∞,+∞)内满足关系式f’(x)=f(x),且f(0)=1,证明:f(x)=e
x
.
选项
答案
[*]
解析
欲证f(x)=e
x
,一种思路是移项作辅助函数ψ(x)=f(x)一e
x
,如能证明ψ’(x)≡0,从而ψ(x)≡C.由条件ψ(0)=f(0)一1=0,得C=0,即f(x)一e
x
≡0,于是f(x)=e
x
.但ψ’(x)=f’(x)一e
x
,利用已知条件f’(x)=f(x)得ψ’(x)=f(x)一e
x
,要证ψ’(x)≡0,即要证f(x)=e
x
,而这就是我们要证明的结论,故这种思路行不通.另一种思路是由f(x)=e
x
两边同除以e
x
得辅助函数ψ(x)=
.若能证明ψ’(x)=0,从而ψ(x)=C,由条件ψ(0)=
=0,因此本题利用第二种思路.
转载请注明原文地址:https://jikaoti.com/ti/NFtRFFFM
0
考研数学二
相关试题推荐
[2005年]如图1.3.5.2所示,c1和c2分别是y=(1+ex)/2和y=ex的图形,过点(0,1)的曲线c3是一单调增函数的图形,过c2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly.记c1,c2与lx所围图形的面积为S1(x);c
[2006年]已知曲线L的方程为(t≥0).过点(一1,0)引L的切线,求切点(x0,y0),并写出切线方程;
(1998年)确定常数a,b,c的值,使
(1999年)设矩阵A=矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X.
[2006年]设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式=0.①若f(1)=0,f′(1)=1,求函数f(u)的表达式.
已知函数y(x)由方程x3+y3-3x+3y-2=0确定,求y(x)的极值。
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
[2011年]一容器的内侧是由图1.3.5.14中曲线绕y轴旋转一周而成的曲面,该曲面由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成.若将容器内盛满的水从容器顶点全部抽出至少需要做多少功?(长度单位为m,重力加速度为g
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记求二元函数f(x,y)=(x2+y2≠0)的最大值,并求最大值点.
随机试题
下述哪一种是非特异性梅毒血清试验
纽曼保健系统模式主要包括的三个部分不包括
某男,52岁,哮喘已六年,反复缠绵不愈,喉中痰鸣,胸闷胁痛,爪甲青紫,面色晦黯,有时夹有口苦口干,便干腹胀,舌紫暗或有瘀斑,脉沉涩。应为
A.脾阳虚证B.寒湿困脾证C.湿热蕴脾证D.肝胆湿热证E.肾气不固证
直接接触防护应选用()。
受甲公司委托,乙锅炉压力容器检测检验站委派具有检验资格的张某,到甲公司对一200立方米的球形液氧储罐进行检测检验。该球罐是由丙公司制造、丁施工公司安装的。依据《特种设备安全法》的规定,下列关于张某检测和执业的说法,正确的是()。
建设项目安全设施设计有下列()情形的,不予批准,并不得开工建设。
根据皮亚杰的理论,图式从低级到高级发展是通过同化与顺应的形式进行的。()
党的十一届三中全会的主要功绩是()。
Between1883and1837,thepublishersofa"pennypress"provedthatalow-pricedpaper,editedtointerestordinarypeople,cou
最新回复
(
0
)