首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
admin
2021-11-15
19
问题
设向量组α
1
,…,α
n
为两两正交的非零向量组,证明:α
1
,…,α
n
线性无关,举例说明逆命题不成立.
选项
答案
令k
1
α
1
+…+k
n
α
n
=0,由α
1
,…,α
n
两两正交及(α
1
,k
1
α
1
+…+k
n
α
n
)=0,得k
1
(α
1
,α
1
)=0,而(α
1
,α
1
)=|α
1
|
2
>0,于是k
1
=0,同理可证k
2
=…=k
n
=0, 故α
1
,…,α
n
线性无关.令α
1
[*],显然α
1
,α
2
线性无关,但α
1
,α
2
不正交.
解析
转载请注明原文地址:https://jikaoti.com/ti/MulRFFFM
0
考研数学二
相关试题推荐
设f(x)是连续函数。若|f(x)|≤k,证明:当x﹥0时,有|y(x)|≤.
设u=u(x,y,z)连续可偏导,令.若,证明:u仅为θ与Φ的函数。
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,,则()。
问a,b,c取何值时,(I)(II)为同解方程组?
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设A,B为两个n阶矩阵,下列结论正确的是()。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设二维非零向量a不是二阶方阵A的特征向量。证明a,Aa线性无关。
随机试题
目前对人类环境造成危害的酸雨主要是由下列哪种气体造成的()。
HTTP请求报文的构成不包括【】
患者,男,80岁,持续心前区疼痛5h,确诊为急性心肌梗死收入监护室,监测中发现患者出现心室颤动,此时责任护士应立即采取的措施是
患者,女性,28岁。孕39周入院待产,B超检查胎儿发育正常。患者手术后出现大量出血,不宜选用下列哪种药物止血
腹水量超过多少毫升时,体检可发现移动性浊音()
2012年5月,张某、刘某、丁某欲成立甲音响设备制造有限公司(以下简称“甲公司”),约定张某以现金20万元,刘某以房产和土地使用权作价25万元向公司出资,由于丁某精通音响设备制造技术,于是张某和刘某均同意丁某以劳务向公司出资,作价15万元。三人在一系列准备
不抵抗主义我向来很赞成,不过因为有些偏于消极,不敢实行。现在一想,这个见解实在是大谬。为什么?因为不抵抗主义面子上是消极,骨底里有最经济的积极。我们要办事有成效,假使不实行这主义,就不免消费精神于无用之地。我们要保存精神,在正当的地方用.就不得不在可以不必
几年来,我国许多餐厅使用一次性筷子。这种现象受到越来越多的批评,理由是我森林资源不足,把大好的木材用来做一次性筷子,实在是莫大的浪费。但奇怪的是,至今一次性筷子的使用还没有被禁止。以下除哪项外,都能对上文的疑问从某一方面给以解释?
火山虽然经常给人类带来巨大的灾害,但它也并非一无是处。火山资源的利用也可以带给我们生活的乐趣与便利。一般来说,火山资源主要体现在它的旅游价值、地热利用和火山岩材料方面。火山和地热是一对孪生兄弟,有火山的地方一般就有地热资源。地热能是一种廉价的新能
Readthetextbelowaboutaretailgroup.Foreachquestion23-28,choosethecorrectanswer.Markoneletter(A,BorC)onyour
最新回复
(
0
)