首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值为λ1=一l,λ2=0,λ3=1,则下列结论不正确的是( ).
设三阶矩阵A的特征值为λ1=一l,λ2=0,λ3=1,则下列结论不正确的是( ).
admin
2019-01-14
42
问题
设三阶矩阵A的特征值为λ
1
=一l,λ
2
=0,λ
3
=1,则下列结论不正确的是( ).
选项
A、矩阵A不可逆
B、矩阵A的迹为零
C、特征值一1,1对应的特征向量正交
D、方程组AX=0的基础解系含有一个线性无关的解向量
答案
C
解析
由λ
1
=一1,λ
2
=0,λ
3
=1得|A|=0,则r(A)<3,即A不可逆,(A)正确;又λ
1
+λ
2
+λ
3
=tr(A)=0,所以(B)正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,选(C).
转载请注明原文地址:https://jikaoti.com/ti/MW1RFFFM
0
考研数学一
相关试题推荐
已知非齐次线性方程组有3个线性无关的解.证明:方程组的系数矩阵A的秩r(A)=2.
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
在R3中,α1,α2,α3,β1,β2,β3是两组基,对任意向量α,α在基α1,α2,α3的坐标为x1,x2,x3.α在基β1,β2,β3的坐标为y1,y2,y3,且两组基下的坐标有关系y1=x1―x2,y2=x2-x3,y3=x3-x1.求R3中的由
计算积分+(y一x)dy,其中L:(I)是半径为a,圆心在原点的上半网周,起点A(a,0),终点B(一a,0)(见图9.2);(Ⅱ)x轴上由A(a,0)到B(-a,0)的直线段.
证明是异面直线,并求公垂线方程及公垂线的长.
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
已知总体X的数学期望EX=μ,方差DX=σ2,X1,X2,…,X2n是来自总体X容量为2n的简单随机样本,样本均值为求EY.
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足=0.95的常数μ=________.(ψ(1.96)=0.975)
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1一θ)2,EX=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
随机试题
关于涂饰工程的说法,正确的是()。
国内某化妆品有限责任公司于20世纪80年代初开发出适合东方女性需求特点的具有独特功效的系列化妆品,并在多个国家获得了专利保护。营销部经理初步分析了亚洲各国和地区的情况,首选日本作为主攻市场。为迅速掌握日本市场的情况,公司派人员直赴日本,主要运用调查法搜集一
下列哪项与风湿热的发病机制无关
缓解支气管痉挛的药物中,其作用机制为兴奋β2。肾上腺素受体的是
甲诉乙侵权一案,由某人民法院受理并组成合议庭公开审理。本案合议庭审判员赵某是甲的舅舅,合议庭陪审员钱某是乙诉讼代理人的姐姐,证人孙某与本案有直接利害关系,案件翻译人员李某曾私下接受过乙诉讼代理人的请客。本案中应当回避的人员是谁?()
甲给机场打电话谎称“3架飞机上有炸弹”,机场立即紧急疏散乘客,对飞机进行地毯式安检,3小时后才恢复正常航班秩序。关于本案,下列哪一选项是正确的?
下列选项中不属于动产的是()
下列关于风险承受的说法,正确的是()。
融资期限在一年以内的金融市场是()。
下列有关税收优惠的说法中,正确的有()。
最新回复
(
0
)