设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处韵切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.

admin2015-07-24  53

问题 设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处韵切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.

选项

答案因为曲线是上凸的,所以y"<0,由题设得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/IbPRFFFM
0

最新回复(0)