首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度f(y)=. (Ⅰ)求P{Y≤EY}; (Ⅱ)求Z=X+Y的概率密度.
设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度f(y)=. (Ⅰ)求P{Y≤EY}; (Ⅱ)求Z=X+Y的概率密度.
admin
2018-07-30
17
问题
设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=
,Y的概率密度f(y)=
.
(Ⅰ)求P{Y≤EY};
(Ⅱ)求Z=X+Y的概率密度.
选项
答案
(Ⅰ)EY=∫
-∞
+∞
yf(y)dy=∫
0
1
y.2ydy=[*] 所以P(Y≤EY)=[*] (Ⅱ)Z的分布函数为: F
Z
(z)=P(Z≤z)=P(X-Y≤z)=P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=2)P(X=2)=P(0+Y≤z).[*]+P(2+y≤z).[*]=[*][∫
-∞
z
f(y)dy∫
-∞
z-2
f(y)dy] 故Z的概率密度为 f
Z
(z)=F′
Z
(z)=[*][f(z)+f(z-2)] [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/Gc2RFFFM
0
考研数学一
相关试题推荐
设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为___________.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设总体X服从正态分布N(μ,σ2)(σ>0).从该总体中抽取简单随机样本X1,X2,…,Xn(n>2).令的数学期望.
设随机变量X的密度函数为f(x)=,则P{|X—E(X)|<2D(X)}=___________.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
设n阶方阵A的每行元素之和为a,|A|≠0,则(1)a≠0;(2)A-1的每行元素之和为a-1.
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
A.造血干细胞增生和分化异常B.遗传性Hb合成异常C.慢性失血D.获得性红细胞膜缺陷E.遗传性红细胞膜缺陷再生障碍性贫血
治疗噤口痢,虚实皆可选用的药物是
县级以上人民代表有权依法向本级人大提出属于其职权范围内的议案。根据现行《宪法》和法律,这类议案至少应当经过下列哪些程序方可通过?
回弹弯沉测试中,应对测试值进行修正,其中包括()。
下列关于世界城镇化进程的表述,哪项是错误的()
材料一:莎士比亚的戏剧《哈姆雷特》中的一段独白:“人是一件多了不起的杰作!多么高贵的理性!多么伟大的力量!多么优美的仪表!多么文雅的举动!在行动上多么像一个天使!在智慧上多么像一个天神!宇宙的精华!万物的灵长!”材料二:“近五年来,中
借助网络的力量,信息的传播速度前所未有地加快,再加上“好事不出门,坏事传千里”的千古定律,企业的负面信息总会被无限放大。这对正面临市场考验的卫浴企业来说,极有可能会成为压死骆驼的最后一根稻草。_______的卫浴市场,企业_______才是应对关键。
持有货币的机会成本是()。
Onlinedatinghasjustbeenrevealedtobeoneofthemostcommonwaystostartarelationship.Butnewresearchrevealsthatth
Thispassagemainlydiscusses______.Thepassagetellsusthat______.
最新回复
(
0
)