首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有 |f(x)—f(y)|≤M|x—y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当|k|>1时,f(x)=常数.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有 |f(x)—f(y)|≤M|x—y|k. (1)证明:当k>0时,f(x)在[a,b]上连续; (2)证明:当|k|>1时,f(x)=常数.
admin
2018-11-22
31
问题
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有
|f(x)—f(y)|≤M|x—y|
k
.
(1)证明:当k>0时,f(x)在[a,b]上连续;
(2)证明:当|k|>1时,f(x)=常数.
选项
答案
(1)对任意的x
0
∈[a,b],由已知条件得 0≤|f(x)一f(x
0
)|≤M|x—x
0
|
k
,[*]=f(x
0
), 再由x
0
的任意性得f(x)在[a,b]上连续. (2)对任意的x
0
∈[a,b],因为k>1, 所以0≤[*]≤M|x—x
0
|
k—1
,由夹逼定理得f’(x
0
)=0,因为x
0
是任意一点,所以f’(x)≡0,故f(x)≡常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/GZ1RFFFM
0
考研数学一
相关试题推荐
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.如果β=α1+α2+α3,求方程组Ax=β的通解.
设f(x)连续可微,f(1)=1.G为不包含原点的连通区域,任取M,N∈G,在G内曲线积分(ydx一xdy)与路径无关.(Ⅰ)求f(x);(Ⅱ)求,取正向.
计算曲面积分I=2x3dydz+2y3dzdx+3(x2—1)dxdy,其中三为曲面z=1一x2一y2(z≥)的上侧.
求曲面积分xdydz+xzdzdx,其中,∑:x2+y2+z2=1(z≥0)取上侧.
设f(x)为连续函数Ω=((x,y,z)|x2+y2+z2≤t2,z≥0},∑为Ω的表面,Dxy为Ω在xOy平面上的投影区域,L为Dxy的边界曲线,当t>0时有求f(x).
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的条件密度函数为fY|X(y|x)=(Ⅰ)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
设求∫f(x)dx.
设求与A乘积可交换的所有矩阵.
随机试题
麻疹与结核的关系中,错误的是
阅读下面现代文。然后回答问题。惊蛰一过,春寒加剧。先是料料峭峭,继而雨季开始,时而淋淋漓漓,时而淅淅沥沥,天潮潮地湿湿,即使在梦里,也似乎把伞撑着。而就凭一把伞,躲过一阵潇潇的冷雨,也躲不过整个雨季。连思想也都是潮润润的。每天回家,曲折穿过金门街到夏门街
患者。李某,男性,71岁,原有“肺痨”,迁延不愈。出现咳吐浊唾涎沫,质黏稠,偶有咳痰带血,咳声不扬,口干咽燥,午后潮热,形体消瘦,舌红而干,脉虚数。其诊断为
妊娠头3个月,可以使用的是对正常妇女月经期有影响的是
房地产经纪人员在与客户进行业务洽谈时,首要环节是()。
从历史发展过程看,()先于资本市场出现,是资本市场的基础。
关于《标准施工招标文件》中缺陷责任的说法,正确的有()。
()是企业总预算的补充和具体化。
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分150分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题卡指定位置填写自己的姓名,填
Theprocessbymeansofwhichhumanbeingsarbitrarilymakecertainthingsstandforotherthingsmaybecalledthesymbolicpro
最新回复
(
0
)