首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2020-12-10
35
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关.例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
等价,但前者线性相关,因而不能是基础解系.故D不正确.B、C均线性相关,因此不能是基础解系.故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
一η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,又由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
,且
知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://jikaoti.com/ti/GIARFFFM
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为-1,-1,,其对应的线性无关的特征向量为a1,a2,a3,令P=(2a1+a2,a1-a2,2a3),则P-1A*P=().
设四阶方阵A=(a1,a2,a3,a4),其中a1,a2,a3线性无关,而a4=2a1-a2+a3,则r(A*)为()。
t=-7
解微分方程y2dx一(y2+2xy—x)dy=0.
设非齐次线性微分方程yˊ+p(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
设δ>0,ff(x)在(—δ,δ)有连续的三阶导数,f’(0)=f"(0)=0且,则下列结论正确的是_________。
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分dxdy.
(03)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使Pr-1AP=Λ.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
随机试题
成本计算对象类型有哪些,它们分别在什么情况下采用?
胸背畸形的姿势练习包括
[2014年,第58题]如图4.11-6所示系统中,当物块振动的频率比为1.27时,k的值是()。
工作流程组织可反映一个组织系统中各项工作之间的逻辑关系,是一种动态关系。在一个建设工程项目实施过程中,下列属于其工作流程组织范畴的有( )。
身处教育实践第一线的研究者与受过专门训练的科学研究者密切协作,以教育实践中存在的某一问题作为研究对象,通过合作研究,再把研究结果应用到自身从事的教育实践中,这种研究方法是()。
中国共产党的思想路线有()。
人类的未知领域并非一个闭合的圆圈,而可能是在许多维度上呈开放型的无限空间。人类知识的积累,实际上是在这个无限空间里不断向更广阔更深邃处延伸的过程。无论对人类全体还是对每个个体而言,知识的增长都意味着所知更多、面临的未知领域更大。这段话主要想说明的是
与先辈不同,这一新生代的中国研究人员不愿意__________接受古籍中的描写。在希冀精确追溯中国历史的尝试中,他们所__________的是实物、数据以及更为“西式”的方法。填入画横线部分最恰当的一项是:
关于Python循环结构,以下选项中描述错误的是
AstudyintheUnitedStatesfindsthatgirlsandyoungwomenusetobacco,drugsandalcoholfordifferentreasonsthanhoys.It
最新回复
(
0
)