首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
admin
2018-11-11
40
问题
设函数f(x)在(0,+∞)上二阶可导,且f
’’
(x)>0,记μ
n
=f(n),n=1,2,…,又μ
1
<μ
2
,证明
μ
n
=+∞。
选项
答案
对函数f(x)分别在区间[k,k+1](k=1,2,…,n,…)上使用拉格朗日中值定理μ
2
一μ
1
=f(2)一f(1)=f
’
(ξ
1
)>0,1<ξ
1
<2, …… μ
n-1
一μ
n-2
=f(n一1)一f(n一2)=f
’
(ξ
n-2
),n一2<ξ
n-2
<n一1, μ
n
一μ
n-1
=f(n)一f(n一1)=f
’
(ξ
n-1
),n一1<ξ
n-1
<n。 因f
’’
(x)>0,故f
’
(x)严格单调增加,即有 f
’
(ξ
n-1
)>f
’
(ξ
n-2
)>…>f
’
(ξ
2
)>f
’
(ξ
1
)=μ
2
一μ
1
, 则 μ
n
=(μ
n
一μ
n-1
)+(μ
n-1
—μ
n-2
)+…+(μ
2
一μ
1
)+μ
1
=f
’
(ξ
n-1
)+f
’
(ξ
n-2
)+…+f
’
(ξ
1
)+μ
1
>f
’
(ξ
1
)+f
’
(ξ
1
)+…+f
’
(ξ
1
)+μ
1
=(n一1)(μ
2
一μ
1
)+μ
1
, 于是有[*]=+∞。
解析
转载请注明原文地址:https://jikaoti.com/ti/FBWRFFFM
0
考研数学二
相关试题推荐
设有直线试问L1与L2是否相交?若相交,求出交点;若不相交,求出两直线间的距离.
设矩阵已知线性方程组Ax=β有解但不唯一,试求:a的值;
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求z=f(x,y)在椭圆域D=上的最大值和最小值.
设z=f(2x—y,ysinx),其中f(u,v)具有二阶连续偏导数,求
计算二重积分其中D={(x,y)|0≤x≤1,0≤y≤1}.
设函数f(u)在(0,+∞)内有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
(2012年)设函数f(χ,y)可微,且对任意χ,y都有型<0,则使不等式f(χ1,y1)<f(χ2,y2)成立的一个充分条件是【】
(2002年)设0<a<b,证明不等式
∫arcsinxarccosxdx.
设齐次线性方程组.为正定矩阵,求a,并求当时XTAX的最大值.
随机试题
Listentothefollowingpassage.Altogetherthepassagewillbereadtoyoufourtimes.Duringthefirstreading,whichwillbe
依1947年元旦公布的《中华民国宪法》,由中央立法并执行的事项有()
securities________
男性患者,体重68kg,56岁,急性肠梗阻2天入院。入院时血压100/68mmHg,心率100次/分,呼吸频率24次/分。急查血K+4mmol/L、Na+138mmol/L、Cl-100mmol/L。补液应首选下列哪种液体
大模板安装安全技术交底的内容包括模板支撑工程的()等,并保留记录。
某房地产估价师运用市场法和假设开发法对一宗4270m2的商业用地于2007年10月21日的土地使用权价格进行评估,该宗地的剩余使用期限为39年,两种估价方法测算出的结果分别为2000元/m2和2300元/m2。假设2006年10月和2007年10月该区域
某建筑公司与某建设单位通过工程量清单招标投标,签订了某写字楼的施工总承包合同,该项目的施工险包括()。
所谓长期投资是指()。
()是违反治安管理行为的主体。
请从所给的选项中,选择最合适的一个,使之呈现一定的规律性:
最新回复
(
0
)