非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则( )

admin2019-02-01  36

问题 非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则(      )

选项 A、r=m时,方程组Ax=b有解。
B、r=n时,方程组Ax=b有唯一解。
C、m=n时,方程组Ax=b有唯一解。
D、r<n时,方程组有无穷多个解。

答案A

解析 对于选项A,r(A)=r=m。由于
r(A,b)≥m=r,
且    r(A,b)≤min{m,n+1}=min{r,n+1}=r,
因此必有r(A,b)=r,从而r(A)=r(A,b),此时方程组有解。
由B、C、D选项的条件均不能推得“两秩”相等。故选A。
转载请注明原文地址:https://jikaoti.com/ti/E2WRFFFM
0

随机试题
最新回复(0)