[2010年] 设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表 示.下列命题中正确的是( ).

admin2021-01-25  30

问题 [2010年]  设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表
示.下列命题中正确的是(    ).

选项 A、若向量组(I)线性无关,则r≤s
B、若向量组(I)线性相关,则r>s
C、若向量组(Ⅱ)线性无关,则r≤s
D、若向量组(Ⅱ)线性相关,则r>s

答案A

解析 仅(A)入选.因向量组(I)可由向量组(Ⅱ)线性表示,故秩(I)≤秩(Ⅱ)=秩([β1,β2,…,βs)≤s.
    若向量组I线性无关,则秩(I)=秩([α1,α2,…,αr])=r,故
           r=秩([α1,α2,…,αr])≤秩([β1,β2,…,βs])≤s.
转载请注明原文地址:https://jikaoti.com/ti/CtaRFFFM
0

最新回复(0)