首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
admin
2017-06-26
49
问题
设区域D
1
为以(0,0),(1,1),(0,
),(
,1)为顶点的四边形,D
2
为以(
,0),(1,0),(1,
)为顶点的三角形,而D由D
1
与D
2
合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度f
X
(χ)、f
Y
(y).
选项
答案
易算得D
1
的面积为[*],D
2
的面积为[*],故D的面积为[*], ∴(X,Y)的概率密度为 [*] ∴f
x
(χ)=∫
-∞
+∞
f(χ,y)dy 当χ≤0或χ≥1时,f
x
(χ)=0; 当0<χ<[*]时,f
x
(χ)=[*]=1; 当[*]≤χ<1时,f
x
(χ)=[*]+∫
χ
1
2dy=1. 而f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 当y≤0或y≥1时,f
Y
(y)=0; 当0<y<[*]时,f
Y
(y)=[*]=1; 当[*]≤y<1时,f
Y
(y)=[*]=1. 故[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/7WSRFFFM
0
考研数学三
相关试题推荐
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT,求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设生产函数为Q=ALaKβ,其中Q是产出量,L是劳动投入量K是资本投入量,而A,a,β均为大于零的参数,则当Q=1时K关于L的弹性为_________.
求下列曲线在xOy面上的投影曲线的方程:
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
n为给定的自然数,极限=____________.
随机试题
患者,男,57岁。自诉眩晕,动则加剧,常因劳累而加重,心悸少寐;入睡困难,神疲懒言,食欲不振,面色无华;舌淡,脉细弱。宜选用的方剂是
设z=xf(ex+y),且f(u)二阶可导,求
含有多量盐分的药材用
患者,女,55岁。既往有慢性肾炎病史。近日因劳累后出现恶心、乏力、尿少,面浮肢肿,纳呆,伴腹水、腹胀,舌苔腻,脉沉滑。血压:160/90mmHg。血红蛋白:89g/L,血肌酐:250μmol/L,Cer:45ml/min。应首先考虑的诊断是
根据公司法的相关理论,下列哪些观点正确的揭示了母子公司之间的关系?()关于A公司的监事会,以下说法正确的是:()。
燃气管道根据输气压力分类,当管道内燃气压力不同时,对()要求也不同。
出口打包贷款是()凭进口商所在地银行开立的信用证及该信用证项下的出口商品为抵押向出口商提供的短期贷款。
将f(x)=*]展开成x一2的幂级数.
求
用于实现互联网中电子邮件输送功能的是()。
最新回复
(
0
)