首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实矩阵A为反对称矩阵,即AT=-A.证明: 对任意一个n维实列向量α,α与Aα正交;
设n阶实矩阵A为反对称矩阵,即AT=-A.证明: 对任意一个n维实列向量α,α与Aα正交;
admin
2021-02-25
31
问题
设n阶实矩阵A为反对称矩阵,即A
T
=-A.证明:
对任意一个n维实列向量α,α与Aα正交;
选项
答案
由定义,只需证明(α,Aα)=α
T
Aα=0. 由于(α,Aα)=(Aα,α)=(Aα)
T
=α
T
A
T
=-α
T
Aα, 所以,有2α
T
Aα=0,从而α
T
Aα=0,所以α与Aα正交.
解析
本题考查反对称矩阵,可逆矩阵、正交矩阵的概念与性质.
转载请注明原文地址:https://jikaoti.com/ti/67ARFFFM
0
考研数学二
相关试题推荐
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设z=f(2x一y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有连续二阶偏导数,求
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
下列矩阵中,正定矩阵是()
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
最终热处理包括哪些热处理方法?各自的目的是什么?用于何种材料?应如何安排?
胰液的pH为
脉压差增大的先天性心脏病是
用餐区域设集中空调时,室内净高不应低于()。
背景资料:某电力建设公司在某地承包一500kV的高压变电站及20km高压输电线路的施工,设备由施工单位采购。在高压外线施工中,因施工场地及占用道路与当地农民和交通管理部门发生矛盾,变压器安装因交货期滞后及质量问题与供货商和业主发生矛盾。在导线连接及线路试
商业银行利润总额的构成包括营业利润和()。
我国的乡、民族乡、镇的人民代表大会每届()。
“体会诗意,神游长城”体现的是()。
Despitethatthewaveofindustrialdevelopmentthathas【M1】______sweptmuchofEastAsiainrecentdecades,thecou
TipsforThoseWhoTravelAloneA)Whenitcomestotraveling,sometimestakingajourneyalonecanbegreat.Travelingalon
最新回复
(
0
)